Linear Equations in One Variable Ex.A

Linear equation in one variable is an equation which can be written in the form of ax + b = 0, where a and b are realnumber constants and $a \neq 0$.

Ex.

$$x + 7 = 12$$

Equation is a mathematical sentence indicating that two expressions are equal. The symbol "=" is used to indicate equality.

Ex.

2x + 5 = 9 is a conditional equation
since its truth or falsity depends on
the value of x

2 + 9 = 11 is identity equation since both of its sides are identical to the same number 11.

Solution Set of a Linear Equation

Example

4x + 2 = 10 this statement is either true of

false

If x = 1, then 4x + 2 = 10 is false because 4(1) + 2 is $\neq 10$

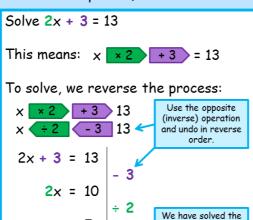
If x = 2, then 4x + 2 = 10 is true because 4(2) + 2 = 10

ONE STEP SUBTRACTION EXAMPLE

The Opposite of Subtraction is Addition

$$x - 120 = 80$$

The value which makes the equation true is 200.


Original problem
We want to remove the minus 4.
The opposite of minus 4 is plus 4, so I added 4 to BOTH sides of the equation.
-4+4 = 0, so x remains on the left and 7+4 = 11; therefore x = 11
This is a correct statement, so my answer is x = 11 is correct!

Solving simple two-step equations

To solve an equation, find the value that makes the equation true.

equation when we

get to a single value of x (here, x = 5).

Solve
$$4x + 6 = 14$$

 $4x + 6 = 14$
 $4x = 8$
 $x = 2$
 $\div 4$

Solve
$$3x - 8 = 19$$

 $3x - 8 = 19$
 $3x = 27$
 $x = 9$

Q1

Answer:

$$3x - 5 = 0$$

 $\Rightarrow 3x = 5$ (Transposing -5 to RHS)
 $\Rightarrow x = \frac{5}{3}$

CHECK: By substituting $x = \frac{5}{3}$ in the given equation, we get:

LHS
$$=3\left(\frac{5}{3}\right)-5=5-5=0$$

x = 5

$$RHS = 0$$

$$\therefore$$
 LHS = RHS

Hence checked.

Q2 Answer:

$$8x - 3 = 9 - 2x$$

 $\Rightarrow 8x + 2x = 9 + 3$ (By transposition)
 $\Rightarrow 10x = 12$
 $\Rightarrow x = \frac{12}{10} = \frac{6}{5}$

CHECK: By substituting $x = \frac{6}{5}$ in the given equation, we get:

LHS:
$$8\left(\frac{6}{5}\right) - 3 = \frac{48}{5} - 3 = \frac{48}{5} = \frac{33}{5}$$

RHS:
$$9 - 2\left(\frac{6}{5}\right) = 9 - \frac{12}{5} = \frac{45 - 12}{5} = \frac{33}{5}$$

$$\therefore$$
 LHS = RHS

Hence checked.

Q3

Answer:

$$7-5x=5-7x$$

$$\Rightarrow -5x + 7x = 5 - 7$$
 [transposing -7x to LHS and 7 to RHS]

$$\Rightarrow 2x = -2$$

$$\Rightarrow x = \frac{-x}{x^1}$$

$$\Rightarrow x = -1$$

Thus, x = -1 is a solution to the given equation.

CHECK: Substituting x = -1 in the given equation, we get:

LHS:
$$= 7 - 5x$$

= $7 - 5 \times (-1)$
= $7 + 5$
= 12

RHS:

$$=5-7x$$

$$=5 - 7 \times (-1)$$

$$= 5 + 7$$

$$=12$$

$$\therefore$$
 LHS = RHS

Hence, x = -1 is a solution of the given equation.

We have:
$$3+2x=1-x\\ \Rightarrow 2x+x+3-1=0\\ \Rightarrow 3x+2=0\\ \Rightarrow x=-\frac{2}{3}$$
 (By transposition)

CHECK: Substituting $x = -\frac{2}{3}$ in the given equation, we get:

LHS: 3+2x $=3+2\times\left(-\frac{2}{3}\right)$ $=3-\frac{4}{3}$

$$RHS - x$$

$$=1 - \left(\frac{-2}{3}\right)$$

$$=1 + \frac{2}{3}$$

$$=\frac{3+2}{3}$$

$$=\frac{5}{3}$$

\therefore LHS = RHS

Hence, $x = -\frac{2}{3}$ is a solution of the given equation.

Q5

Answer:

We have:

We have:

$$2(x-2)+3(4x-1)=0$$

$$\Rightarrow 2x-4+12x-3=0$$

$$\Rightarrow 14x-7=0$$

$$\Rightarrow 14x=7$$
(By transposition)

$$\Rightarrow x=\frac{1}{2}$$

CHECK: Substituting $x = \frac{1}{2}$ in the given equation, we get:

com

LHS:
$$2(x-2) + 3(4x-1)$$

= $2x - 4 + 12x - 3$
= $2 \times \frac{1}{2} - 4 + 12 \times \frac{1}{2} - 3$
= $1 - 4 + 6 - 3$
= $-7 + 7$
= 0

RHS: 0

 \therefore LHS= RHS

Hence, $x=\frac{1}{2}$ is a solution of the given equation.

Q6

Answer:

We have: 5(2x-3)-3(3x-7)=5 $\Rightarrow 10x - 15 - 9x + 21 = 5$ (By transposition) $\Rightarrow 10x - 9x = 5 + 15 - 21$ $\Rightarrow x = 20 - 21$ $\Rightarrow x = -1$

CHECK: Substituting x=-1 in the given equation, we get:

LHS:
$$5(2x-3) - 3(3x-7)$$

= $10x - 15 - 9x + 21$
= $10 \times (-1) - 15 - 9 \times (-1) + 21$
= $-10 - 15 + 9 + 21$
= $-25 + 30$
=5
RHS: 5

 \therefore LHS = RHS

Hence, x=-1 is a solution of the given equation.

We have:

$$2x - \frac{1}{3} = \frac{1}{5} - x$$

$$\Rightarrow 2x + x = \frac{1}{5} + \frac{1}{3}$$

$$\Rightarrow 3x = \frac{3 \times 1 + 5 \times 1}{15}$$

$$\Rightarrow 3x = \frac{3+5}{15}$$

$$\Rightarrow 3x = \frac{8}{15}$$

$$\Rightarrow x = \frac{8}{15 \times 3}$$

$$\Rightarrow x = \frac{8}{45}$$

CHECK: Substituting $x=\frac{8}{45}$ in the given equation, we get:

LHS:
$$2x - \frac{1}{3}$$

$$=2 \times \frac{8}{45} - \frac{1}{3}$$

$$= \frac{16}{45} - \frac{1}{3}$$

$$= \frac{16 \times 1 - 15 \times 1}{45}$$

$$= \frac{16 - 15}{45}$$

$$= 1$$

$$=\frac{16-15}{45}$$

RHS:
$$\frac{1}{5} - x$$

= $\frac{1}{5} - \frac{8}{5}$

$$=\frac{1\times 9-1\times 3}{45}$$

$$=\frac{1}{45}$$

:.LHS=RHS

Hence, $x = \frac{8}{45}$ is a solution of the given equation.

Q8

Answer:

We have:

$$\frac{1}{2}x - 3 = 5 + \frac{1}{3}x$$

$$\Rightarrow \frac{1}{2} x - \frac{1}{3} x = 5 + 3$$

$$\Rightarrow \frac{1}{2}x - \frac{1}{3}x = 5 + 3$$
 (transposing $\frac{1}{3}x$ to LHS and -3 to RHS)

$$\Rightarrow \left(\frac{}{}\right)x =$$

$$\Rightarrow \left(\frac{3-2}{6}\right)x = 8$$

$$\Rightarrow \frac{1}{6}x = 8$$

$$\Rightarrow x = 8 \times 6$$

$$\Rightarrow x = 4$$

CHECK: Substituting x=48 in the given equation, we get:

LHS:
$$\frac{1}{2}x - 3$$

$$=\frac{1}{\frac{2}{2}}\times\frac{4\cdot 8}{2}^{24}-3$$

$$=24-3$$

=21

RHS:
$$5 + \frac{1}{3}x$$

$$=5+\frac{1}{3}\times\frac{4}{3}\cdot\frac{8}{6}$$

$$=5+16$$

$$=21$$

 \therefore LHS=RHS Hence, x=48 is a solution of the given equation.

$$\frac{x}{2} + \frac{x}{4} = \frac{1}{8}$$

$$\Rightarrow \frac{x \times 2 + x \times 1}{4} = \frac{1}{8}$$

$$\Rightarrow \frac{2x + x}{4} = \frac{1}{8}$$

$$\Rightarrow \frac{3x}{4} = \frac{1}{8}$$

$$\Rightarrow 3x = \frac{1}{2} \times 4$$

$$\Rightarrow 3x = \frac{1}{2}$$

$$\Rightarrow x = \frac{1}{6}$$

CHECK: Substituting $x = \frac{1}{6}$ in the given equation, we get:

LHS:
$$\frac{x}{2} + \frac{x}{4}$$

 $= \frac{x \times 2 + x \times 1}{4}$
 $= \frac{2x + x}{4}$
 $= \frac{3x}{4}$
 $= \frac{3^{1}}{4} \times \frac{1}{6^{3}}$
 $= \frac{1}{8}$

RHS: $\frac{1}{8}$

 \therefore LHS = RHS

Hence, $x = \frac{1}{3}$ is a solution of the given equation.

Q10

Answer:

We have:

We have.

$$3x + 2(x + 2) = 20 - (2x - 5)$$

$$\Rightarrow 3x + 2x + 4 = 20 - 2x + 5$$

$$\Rightarrow 3x + 2x + 2x = 20 + 5 - 4$$

$$\Rightarrow 7x = 21$$

$$\Rightarrow x = \frac{2 + 3}{x^{1}}$$

$$\Rightarrow x = 3$$
(Transposing - 2x to LHS and 4 to RHS)

CHECK: Substituting x=3 in the given equation, we get:

LHS=
$$3x + 2(x + 2)$$

= $3x + 2x + 4$
= $5x + 4$
= $5 \times 3 + 4$
= $15 + 4$
= 19

RHS=
$$20 - (2x - 5)$$

= $20 - 2x + 5$
= $25 - 2 \times 3$
= $25 - 6$
= 19

 $\therefore \ LHS = RHS$

Hence, x=3 is a solution of the given equation.

CHECK: Substituting x=9 in the given equation, we get:

$$\begin{aligned} \text{LHS} &= 13(y-4) - 3(y-9) - 5(y+4) \\ &= 13y - 52 - 3y + 27 - 5y - 20 \\ &= 13y - 3y - 5y - 52 + 27 - 20 \\ &= 5y - 45 \\ &= 5 \times 9 - 45 \\ &= 45 - 45 \\ &= 0 \end{aligned}$$

RHS=0

∴ LHS=RHS

Hence, x=9 is a solution of the given equation.

Q12

Answer:

We have, $\frac{2m+5}{3} = 3m - 10$ $\Rightarrow 2m+5 = 3(3m-10)$ $\Rightarrow 2m+5 = 9m-30$ $\Rightarrow 2m-9m = -30-5$ $\Rightarrow -7m = -35$ $\Rightarrow m = \frac{-3\cdot5^{\circ}}{-7^{\circ}}$ $\Rightarrow m = 5$ (Transposing 9m to LHS and 5 to RHS)

CHECK: Substituting m = 5 in the given equation, we get:

LHS=
$$\frac{2m+5}{3}$$

= $\frac{2\times 5+5}{3}$
= $\frac{10+5}{3}$
= $\frac{1-5}{3}$
= 5

$$RHS=3m-10 \\ = 3 \times 5 - 10 \\ = 15 - 10 \\ = 5$$

: LHS=RHS

Hence, x=5 is a solution of the given equation.

We have:
$$6(3x+2) - 5(6x-1) = 3(x-8) - 5(7x-6) + 9x$$

$$\Rightarrow 18x+12 - 30x + 5 = 3x - 24 - 35x + 30 + 9x$$

$$\Rightarrow 18x - 30x - 3x + 35x - 9x = -24 + 30 - 12$$

$$-5 \qquad \text{(Transposing } 3x, 9x \text{ and } -35x \text{ to LHS and } 12 \text{ and } 5 \text{ to RHS)}$$

$$\Rightarrow 53x - 42x = 30 - 41$$

$$\Rightarrow 11x = -11$$

$$\Rightarrow x = \frac{-1}{+1}$$

$$\Rightarrow x = -1$$

CHECK: Substituting x=-1 in the given equation, we get:

LHS=
$$6(3x+2) - 5(6x-1)$$

= $18x+12 - 30x + 5$
= $-12x + 17$
= $-12 \times (-1) + 17$
= $12+17$
= 29

$$RHS=3(x-8) - 5(7x-6) + 9x$$

$$=3x - 24 - 35x + 30 + 9x$$

$$=12x - 35x - 24 + 30$$

$$= -23x + 6$$

$$= -23 \times (-1) + 6$$

$$= 23 + 6$$

$$= 29$$

:: LHS=RHS

Hence, x = -1 is a solution of the given equation.

Q14

Answer:

We have:

$$t - (2t + 5) - 5(1 - 2t) = 2(3 + 4t) - 3(t - 4)$$

$$\Rightarrow t - 2t - 5 - 5 + 10t = 6 + 8t - 3t + 12$$

$$\Rightarrow t - 2t + 10t - 8t + 3t = 6 + 12 + 5 + 5$$

$$\Rightarrow 14t - 10t = 28$$

$$\Rightarrow 4t = 28$$

$$\Rightarrow x = \frac{2 \cdot 8^{7}}{4^{1}}$$
(By transposition)

com

 $\Rightarrow x = 7$

CHECK: Substituting x=7 in the given equation, we get:

LHS=
$$t - (2t+5) - 5(1-2t)$$

= $t - 2t - 5 - 5 + 10t$
= $11t - 2t - 10$
= $9t - 10$
= $9 \times 7 - 10$
= $63 - 10$
= 53
RHS= $2(3 + 4t) - 3(t - 4)$

RHS=
$$2(3+4t) - 3(t-4)$$

= $6+8t - 3t + 12$
= $5t + 18$
= $5 \times 7 + 18$
= $35 + 18$
= 53
:: LHS=RHS

Hence, x=7 is a solution of the given equation.

We have:

$$\begin{array}{l} \frac{2}{3}x = \frac{3}{8}x + \frac{7}{12} \\ \Rightarrow \frac{2}{3}x - \frac{3}{8}x = \frac{7}{12} \\ \Rightarrow \left(\frac{2 \times 8 - 3 \times 3}{24}\right)x = \frac{7}{12} \\ \Rightarrow \left(\frac{16 - 9}{24}\right)x = \frac{7}{12} \\ \Rightarrow \frac{7}{24}x = \frac{7}{12} \\ \Rightarrow x = \frac{7^{1}}{1 + 2^{1}} \times \frac{2 - 4^{2}}{7^{1}} \\ \Rightarrow x = 2 \end{array}$$

CHECK: Substituting x=2 in the given equation, we get:

LHS=
$$\frac{2}{3}x$$

= $\frac{2}{3} \times 2$
= $\frac{4}{3}$
RHS= $\frac{3}{8}x + \frac{7}{12}$
= $\frac{3}{8} \times 2 + \frac{7}{12}$
= $\frac{6}{8} + \frac{7}{12}$
= $\frac{6 \times 3 + 7 \times 2}{24}$
= $\frac{18 + 14}{24}$
= $\frac{3 \times 2}{4}$

:.LHS=RHS

Hence, x=2 is a solution of the given equation.

Q16

Answer:

We have:

$$\frac{3x-1}{5} - \frac{x}{7} = 3$$

$$\Rightarrow \frac{7(3x-1)-5\times x}{35} = 3$$

$$\Rightarrow \left(\frac{21x-7-5x}{35}\right) = 3$$

$$\Rightarrow \left(\frac{16x-7}{35}\right) = 3$$

$$\Rightarrow 16x - 7 = 3 \times 35$$

$$\Rightarrow 16x - 7 = 105$$

$$\Rightarrow 16x = 105 + 7$$

$$\Rightarrow 16x = 112$$

$$\Rightarrow x = \frac{1+2^{7}}{16^{1}}$$

$$\Rightarrow x = 7$$
(Transposing 35 to RHS)

CHECK: Substituting x=7 in the given equation, we get:

LHS=
$$\frac{3x-1}{5} - \frac{x}{7}$$

= $\frac{7(3x-1)-5\times 3}{35}$
= $\left(\frac{21x-7-5x}{35}\right)$
= $\left(\frac{16x-7}{35}\right)$
= $\left(\frac{16\times 7-7}{35}\right)$
= $\frac{112-7}{35}$
= $\frac{1\cdot 0\cdot 5^3}{\cdot 3\cdot 5^1}$
= 3

RHS=3

:: LHS=RHS

Hence, x=3 is a solution of the given equation.

Q17

Answer:

We have:

$$2x - 3 = \frac{3}{10} \left(5x - 12\right)$$

$$\Rightarrow 10(2x - 3) = 3(5x - 12)$$

$$\Rightarrow 20x - 30 = 15x - 36$$

$$\Rightarrow 20x - 15x = -36 + 30$$
 (Transposing 15x to LHS and -30 to RHS)
$$\Rightarrow 5x = -6$$

$$\Rightarrow x = \frac{-6}{5}$$

CHECK: Substituting $x = \frac{-6}{5}$ in the given equation, we get:

LHS=
$$2x - 3$$

= $2 \times \left(\frac{-6}{5}\right) - 3$
= $\frac{-12}{5} - 3$
= $\frac{-12 - (3 \times 5)}{5}$
= $\frac{-12 - 15}{5}$
= $\frac{-27}{5}$

RHS=
$$\frac{3}{10} \left(5x - 12 \right)$$

$$= \frac{3}{10} \left(\frac{5}{5} \right)^{1} \times \frac{-6}{5} - 1$$

$$= \frac{3}{10} \times \left(-18 \right)$$

$$= \frac{3}{10} \times \left(-18 \right)$$

$$= \frac{3}{10} \times \left(-18 \right)$$

$$= \frac{-27}{5}$$

:.LHS=RHS

Hence, $x = \frac{-6}{5}$ is a solution of the given equation.

Q18

Answer:

We have: $\frac{y-1}{3} - \frac{y-2}{4} = 1$ $\Rightarrow \frac{4(y-1)-3(y-2)}{12} = 1$ $\Rightarrow \left(\frac{4y-4-3y+6}{12}\right) = 1$ $\Rightarrow \left(\frac{y+2}{12}\right) = 1$ $\Rightarrow y+2 = 1 \times 12$ $\Rightarrow y = 12 - 2$ $\Rightarrow y = 10$

CHECK: Substituting y=10 in the given equation, we get:

LHS=
$$\frac{y-1}{3} - \frac{y-2}{4}$$
= $\frac{4(y-1)-3(y-2)}{12}$
= $\left(\frac{y+2}{12}\right)$
= $\left(\frac{10+2}{12}\right)$
= $\frac{\frac{1-2}{1}}{\frac{1-2}{2}}$
=1

RHS=1

:: LHS=RHS

Hence, y=10 is a solution of the given equation.

Q19

Answer:

We have:

we have:
$$\frac{x-2}{4} + \frac{1}{3} = x - \frac{2x-1}{3}$$

$$\Rightarrow \frac{x-2}{4} + \frac{2x-1}{3} - x = -\frac{1}{3} \qquad \text{(Transposing } -\frac{2x-1}{3} \text{ to LHS and } \frac{1}{3} \text{ to RHS)}$$

$$\Rightarrow \left(\frac{3(x-2)+4(2x-1)-12x}{12}\right) = -\frac{1}{3}$$

$$\Rightarrow \left(\frac{3x-6+8x-4-12x}{12}\right) = -\frac{1}{3}$$

$$\Rightarrow 11x - 12x - 10 = -\frac{1}{3} \times \frac{1-2}{3}$$

$$\Rightarrow -x = -4 + 10$$

$$\Rightarrow -x = 6$$

$$\Rightarrow x = -6$$
CHECK: Substituting $x = -6$ in the given equation, we get:
$$LHS = \frac{x-2}{4} + \frac{1}{3}$$

$$= \frac{-6-2}{4} + \frac{1}{3}$$

$$= -2 + \frac{1}{3}$$

LHS=
$$\frac{x-2}{4} + \frac{1}{3}$$

= $\frac{-6-2}{4} + \frac{1}{3}$
= $-2 + \frac{1}{3}$
= $\frac{-5}{3}$
RHS= $x - \frac{2x-1}{3}$
= $-6 - \frac{2\times(-6)-1}{3}$
= $-6 + \frac{(-13)}{3}$
= $-6 + \frac{13}{3}$
= $\frac{-5}{3}$

 \therefore LHS=RHS

Hence, y=10 is a solution of the given equation.

Q20

Answer:

We have:
$$\frac{2x-1}{3} - \frac{6x-2}{5} = \frac{1}{3}$$

$$\Rightarrow \frac{5(2x-1)-3(6x-2)}{15} = \frac{1}{3}$$

$$\Rightarrow \frac{10x-5-18x+6}{15} = \frac{1}{3}$$

$$\Rightarrow \frac{-8x+1}{15} = \frac{1}{3}$$

$$\Rightarrow -8x+1 = \frac{1}{3} \times 15$$

$$\Rightarrow -8x = 5 - 1$$

$$\Rightarrow -x = \frac{4}{8}$$

$$\Rightarrow x = -\frac{2}{4} = \frac{-1}{2}$$
CHINGING ALTHOUGH ALTHOUGH

CHECK: Substituting $x = -\frac{1}{2}$ in the given equation, we get:

LHS=
$$\frac{2x-1}{3} - \frac{6x-2}{5}$$

= $\frac{-8x+1}{15}$
= $\frac{-8\times\left(-\frac{1}{2}\right)+1}{15}$
= $\frac{5}{15}$
= $\frac{1}{3}$
RHS= $\frac{1}{3}$
∴ LHS=RHS
Hence, y= $-\frac{1}{2}$ is a solution of the given equation.

Q21

Answer:

We have:
$$\frac{y+7}{3} = 1 + \frac{3y-2}{5}$$

$$\Rightarrow \frac{y+7}{3} = \frac{5 \times 1 + 3y-2}{5}$$

$$\Rightarrow 5(y+7) = 3(3+3y)$$

$$\Rightarrow 5y+35 = 9+9y$$

$$\Rightarrow 9y-5y=35-9$$

$$\Rightarrow 4y=26$$

$$\Rightarrow y = \frac{13}{2}$$

CHECK: Substituting $x = \frac{13}{2}$ in the given equation, we get:

LHS=
$$\frac{y+7}{3}$$

= $\frac{\frac{13}{2}+7}{3}$
= $\frac{1\times13+2\times7}{2}$
= $\frac{13+14}{6}$
= $\frac{27}{6}$
= $\frac{9}{2}$

RHS=1+
$$\frac{3 \times \frac{12}{2} - 2}{5}$$
= 1 + $\frac{\frac{39 - 2 \times 2}{5}}{5}$
= 1 + $\frac{35}{10}$
= $\frac{45}{10}$
= $\frac{9}{2}$
 \therefore LHS=RHS

Hence, $y = \frac{13}{2}$ is a solution of the given equation.

Q22

Answer:

We have:

$$\Rightarrow \frac{2}{7} \left(x - 9 \right) + \frac{x}{3} = 3$$

$$\Rightarrow \frac{2 \times 3 (x - 9) + 7x}{21} = 3$$

$$\Rightarrow 6(x - 9) + 7x = 3 \times 21$$

$$\Rightarrow 6x - 54 + 7x = 63$$

$$\Rightarrow 13x = 63 + 54$$

$$\Rightarrow 13x = 117$$

$$\Rightarrow x = 9$$

CHECK: Substituting x=9 in the given equation we get.

LHS=
$$\frac{2}{7}(x-9) + \frac{x}{3}$$

= $\frac{2}{7}(9-9) + \frac{x}{3}$
= $0+\frac{9}{3}$
= $\frac{9}{3}$
= 3
RHS= 3

\therefore LHS = RHS

Hence, x=9 is a solution of the given equation.

Q23

Answer:

We have:

$$\Rightarrow \frac{2x-3}{5} + \frac{x+3}{4} = \frac{4x+1}{7}$$

$$\Rightarrow \frac{4(2x-3)+5(x+3)}{20} = \frac{4x+1}{7}$$

$$\Rightarrow \frac{8x-12+5x+15}{20} = \frac{4x+1}{7}$$

$$\Rightarrow \frac{13x+3}{20} = \frac{4x+1}{7}$$

$$\Rightarrow 7(13x+3) = 20(4x+1)$$

$$\Rightarrow 91x+21 = 80x+20$$

$$\Rightarrow 91x-80x = 20-21$$

$$\Rightarrow 11x = -1$$

$$\Rightarrow x = \frac{-1}{11}$$

⇒
$$91x - 80x = 20 - 21$$

⇒ $11x = -1$
⇒ $x = \frac{-1}{11}$
CHECK: Substituting $x = -1$ in the given equation, we get:
LHS:
LHS= $\frac{2x-3}{5} + \frac{x+3}{4}$
 $= \frac{2 \times \frac{1}{11} - 3}{5} + \frac{1}{\frac{11}{1}} + \frac{3}{4}$
 $= \frac{-2 - 33}{55} + \frac{33 - 1}{44}$
 $= -\frac{35}{55} + \frac{32}{44}$
 $= \frac{-140 + 160}{220}$
 $= \frac{20}{220} = \frac{1}{11}$
RHS= $\frac{4x+1}{7}$
 $= \frac{4 \times \left(-\frac{1}{11}\right) + 1}{7}$
 $= \frac{-4 + 11}{7 \times 11}$

$$RHS = \frac{4x+1}{7}$$

$$= \frac{4\times\left(-\frac{1}{11}\right)+1}{7}$$

$$= \frac{-4+11}{7\times 11}$$

$$= \frac{7}{77}$$

$$= \frac{1}{11}$$

$$\therefore$$
 LHS = RHS

Hence, $x = \frac{-1}{11}$ is a solution of the given equation.

Q24

Answer:

We have:
$$\frac{3}{4} \left(7x - 1 \right) - \left(2x - \frac{1-x}{2} \right) = x + \frac{3}{2}$$

$$\Rightarrow \frac{3}{4} \left(7x - 1 \right) - 2x + \frac{1-x}{2} - x = \frac{3}{2}$$

$$\Rightarrow \frac{3 \times 7}{4} x - \frac{3}{4} - 2x + \frac{1}{2} - \frac{x}{2} - x = \frac{3}{2}$$

$$\Rightarrow \frac{21}{4} x - 2x - \frac{x}{2} - x = \frac{3}{2} + \frac{3}{4} - \frac{1}{2}$$

$$\Rightarrow \frac{21x - 8x - 2 \times x - 4x}{4} = 1 + \frac{3}{4}$$

$$\Rightarrow \frac{21x - 14x}{4} = \frac{7}{4}$$

$$\Rightarrow \frac{7x}{4} = \frac{7}{4}$$

$$\Rightarrow x = 1$$

$$\Rightarrow x = 1$$

CHECK: Substituting x=1 in the given equation, we get:

LHS=
$$\frac{3}{4}\left(7x-1\right)-\left(2x-\frac{1-x}{2}\right)$$

= $\frac{3}{4}\left(7\times1-1\right)-\left(2\times1-\frac{1-1}{2}\right)$
= $\frac{3}{4}\times6-2$
= $\frac{9}{2}-2$
= $\frac{9-4}{2}$
= $\frac{5}{2}$
RHS= $x+\frac{3}{2}$
= $1+\frac{3}{2}$
= $\frac{5}{2}$

\therefore LHS = RHS

Hence, x=1 is a solution of the given equation.

Q25

Answer:

We have:

We have
$$\frac{x+2}{6} - \left(\frac{11-x}{3} - \frac{1}{4}\right) = \frac{3x-4}{12}$$

$$\Rightarrow \frac{x+2}{6} - \left(\frac{11-x}{3}\right) + \frac{1}{4} = \frac{3x-4}{12}$$

$$\Rightarrow \frac{x+2}{6} - \left(\frac{11-x}{3}\right) - \frac{3x-4}{12} = -\frac{1}{4}$$

$$\Rightarrow \frac{2(x+2)-4(11-x)-1(3x-4)}{12} = -\frac{1}{4}$$

$$\Rightarrow \frac{2x+4-44+4x-3x+4}{12} = -\frac{1}{4}$$

$$\Rightarrow 3x - 36 = -\frac{1}{4} \times 12$$

$$\Rightarrow 3x = -3 + 36$$

$$\Rightarrow x = \frac{33}{3}$$

$$\Rightarrow x = 11$$
(By transposition)

CHECK: Substituting x=11 in the given equation, we get:

LHS=
$$\frac{x+2}{6} - \left(\frac{11-x}{3} - \frac{1}{4}\right)$$
= $\frac{11+2}{6} - \left(\frac{11-11}{3} - \frac{1}{4}\right)$
= $\frac{13}{6} - \left(-\frac{1}{4}\right)$
= $\frac{13}{6} + \frac{1}{4}$
= $\frac{13 \times 2 + 3}{12}$
= $\frac{29}{12}$
RHS= $\frac{3x-4}{12}$
= $\frac{3 \times 11 - 4}{12}$
= $\frac{33 - 4}{12}$
= $\frac{29}{2}$

Hence, $\boldsymbol{x}=11$ is a solution of the given equation.

Verified.

We have:

 $\Rightarrow x = 9$

$$\frac{9x+7}{2} - \left(x - \frac{x-2}{7}\right) = 36$$

$$\Rightarrow \frac{9x+7}{2} - x + \frac{x-2}{7} = 36$$

$$\Rightarrow \frac{7(9x+7) - 14 \times x + 2 \times (x-2)}{14} = 36$$

$$\Rightarrow \frac{63x+49 - 14x+2x-4}{4} = 36$$

$$\Rightarrow 51x + 45 = 36 \times 14$$

$$\Rightarrow 51x = 504 - 45$$

$$\Rightarrow x = \frac{459}{51}$$

$$\Rightarrow x = 9$$

CHECK: Substituting x=9 in the given equation, we get:

LHS=
$$\frac{9x+7}{2} - \left(x - \frac{x-2}{7}\right)$$

= $\frac{9\times 9+7}{2} - \left(9 - \frac{9-2}{7}\right)$
= $\frac{88}{2} - 9 + \frac{7}{7}$
= $44 - 9 + 1$
= 36
RHS= 36

:: LHS=RHS

Hence, x = 11 is a solution of the given equation.

Verified.

Q27

Answer:

We have:

we have:

$$0.5x + \frac{x}{3} = 0.25x + 7$$

$$\Rightarrow \frac{1}{2}x + \frac{x}{3} = \frac{x}{4} + 7$$

$$\Rightarrow \frac{x}{2} + \frac{x}{3} - \frac{x}{4} = 7$$

$$\Rightarrow \frac{6x + 4x - 3x}{12} = 7$$

$$\Rightarrow \frac{7x}{12} = 7$$

$$\Rightarrow x = 12$$

CHECK: Substituting x=9 in the given equation, we get:

LHS=
$$0.5x + \frac{x}{3}$$

= $0.5 \times 12 + \frac{12}{3}$
= $\frac{1}{2} \times 12 + 4$
= $6+4$
= 10
RHS= $0.25x + 7$
= $0.25 \times 12 + 7$
= $3 + 7$
= 10

: LHS=RHS

Hence, x = 12 is a solution of the given equation. Verified.

We have:

$$0.18(5x - 4) = 0.5x + 0.8$$

$$\Rightarrow$$
 100 × 0.18(5x - 4) = 100(0.5x + 0.8) (Multipling both sides by 100)

$$\Rightarrow 18(5x-4) = 100 \times 0.5x + 100 \times 0.8$$

$$\Rightarrow 90x - 72 = 50x + 80$$

$$\Rightarrow 90x - 50x = 80 + 72$$

$$\Rightarrow 40x = 152$$

$$\Rightarrow x = \frac{152}{40}$$

$$\Rightarrow$$
 x= $\frac{19}{5}$ =3.8

CHECK: Substituting x=3.8 in the given equation, we get:

LHS=
$$0.18(5x-4)$$

$$=0.18(5 \times 3.8 - 4)$$

$$=\!0.18\times15$$

$$=2.7$$

RHS = 0.5x + 0.8

$$=0.5 \times 3.8 + 0.8$$

$$=1.9+0.8$$

$$= 2.7$$

Hence, x = 3.8 is a solution of the given equation.

Verified.

Q29

Answer:

We have:

$$\Rightarrow 2.4(3-x)-0.6(2x-3)=0$$

$$\Rightarrow 10 \times 2.4(3-x) - 10$$

 $\times 0.6(2x-3)=0$ (Multiplying both sides by 10 to remove decimals)

$$\Rightarrow 24(3-x)-6(2x-3)=0$$

$$\Rightarrow$$
 6[4(3-x)-(2x-3)] = 0

$$\Rightarrow 4(3-x)-(2x-3)=0$$

$$\Rightarrow 12 - 4x - 2x + 3 = 0$$

$$\Rightarrow 15 - 6x = 0$$
$$\Rightarrow -6x = -15$$

$$\Rightarrow x = \frac{15}{6}$$

$$\Rightarrow$$
 x= $\frac{5}{2}$ =2.5

CHECK: Substituting x=2.5 in the given equation, we get:

LHS=
$$2.4(3-x)-0.6(2x-3)$$

$$=2.4(3-2.5)-0.6(2\times2.5-3)$$

$$=2.4 \times 0.5 - 0.6 \times 2$$

=1.2-1.2

=0

RHS=0

 \therefore LHS = RHS

Hence, $x = \frac{19}{5}$ is a solution of the given equation.

Verified.

We have:

$$0.5x - (0.8 - 0.2x) = 0.2 - 0.3x$$

$$\Rightarrow 0.5x + 0.3x - 0.8 + 0.2x = 0.2$$
 (By transposition)

$$\Rightarrow (0.5 + 0.3 + 0.2)x = 0.2 + 0.8$$

$$\Rightarrow 1x = 1$$

$$\Rightarrow x = 1$$

CHECK: Substituting x=1 in the given equation, we get:

LHS=
$$0.5x - (0.8 - 0.2x)$$

$$=0.5 \times 1 - (0.8 - 0.2 \times 1)$$

$$=0.5-0.8+0.2$$

$$= -0.1$$

$$RHS = 0.2 - 0.3x$$

$$=0.2-0.3\times1$$

$$= -0.1$$

$$\therefore$$
 LHS=RHS

Hence, x = 1 is a solution of the given equation.

Verified.

Q31

Answer:

We have:

$$\frac{x+2}{x-2} = \frac{7}{3}$$

$$\Rightarrow$$
 $(x+2) \times 3=7 \times (x-2)$ (Cross multiplication)

$$\Rightarrow 3x + 6 = 7x - 14$$

$$\Rightarrow 4x = 20$$

$$\Rightarrow x = \frac{20}{4}$$

$$\Rightarrow x = 5$$

CHECK: Substituting x=5 in the given equation, we get

LHS=
$$\frac{x+2}{x-2}$$

$$RHS = \frac{7}{3}$$

 \therefore LHS=RHS

Hence, x = 5 is a solution of the given equation.

Verified.

Answer

We have:

$$\frac{2x+5}{3x+4}=3$$

$$\Rightarrow \frac{2x+3}{3x+4} = \frac{3}{1}$$

$$\Rightarrow 1 \times (2x+5) = 3 \times (3x+4)$$

$$\Rightarrow 2x + 5 = 9x + 12$$

$$\Rightarrow$$
 7 $x = -7$

$$\Rightarrow x = -1$$

CHECK: Substituting x=-1 in the given equation, we get:

LHS:
$$\frac{2x+5}{3x+4}$$

$$3x+4$$

$$= \frac{2 \times (-1) + 5}{2 \times (-1) + 4}$$

$$=\frac{2\times(-1)+5}{3\times(-1)+4}$$

$$=\frac{-2+5}{-3+4}$$

$$=\frac{3}{1}$$

$$RHS = 3$$

$$\therefore$$
 LHS = RHS

Hence, x = 5 is a solution of the given equation.

Verified.

Linear Equations in One Variable Ex 7B

Linear equation in one variable is an equation which can be written in the form of ax + b = 0, where a and b are realnumber constants and $a \neq 0$.

Ex.

$$x + 7 = 12$$

Equation is a mathematical sentence indicating that two expressions are equal. The symbol "=" is used to indicate equality.

Ex.

2x + 5 = 9 is a conditional equation since its truth or falsity depends on the value of x

2 + 9 = 11 is identity equation since both of its sides are identical to the same number 11.

Solution Set of a Linear Equation

Example

4x + 2 = 10 this statement is either true of

false

If x = 1, then 4x + 2 = 10 is false because 4(1) + 2 is $\neq 10$

If x = 2, then 4x + 2 = 10 is true because 4(2) + 2 = 10

ONE STEP SUBTRACTION EXAMPLE

The Opposite of Subtraction is Addition

$$x - 120 = 80$$

The value which makes the equation true is 200.

Original problem
We want to remove the minus 4.
The opposite of minus 4 is plus 4, so I added 4 to BOTH sides of the equation.
-4+4 = 0, so x remains on the left and 7+4 = 11; therefore x = 11
This is a correct statement, so my answer is x = 11 is correct!

Solving simple two-step equations

To solve an equation, find the value that makes the equation true.

Solve 2x + 3 = 13

This means:
$$\times$$
 \times 2 + 3 = 13

To solve, we reverse the process:

Use the opposite (inverse) operation and undo in reverse order.

$$2x + 3 = 13$$

$$x = 5$$
 \div

We have solved the equation when we get to a single value of x (here, $x = 5$).

Solve
$$4x + 6 = 14$$

$$4x + 6 = 14$$

- 6

÷ 4

+ 8

÷ 3

$$x = 2$$

Solve
$$3x - 8 = 19$$

$$3x - 8 = 19$$

Q1

Answer:

Let the number be

Then, we have:

$$\Rightarrow 2x - 7 = 45$$

$$\Rightarrow 2x = 45 + 7$$

$$\Rightarrow x = \frac{45+7}{2}$$

$$\Rightarrow x = \frac{\frac{5}{2}}{\frac{2}{2}}$$

$$\Rightarrow x = 26$$

... The required number is 26.

Q2

Answer:

Let the number be x.

Then, we have:

$$\Rightarrow 3x + 5 = 44$$

$$\Rightarrow 3x = 44 - 5$$

$$\Rightarrow x = \frac{44-3}{3}$$

$$\Rightarrow x = rac{3 \cdot 9^{\cdot 13}}{3 \cdot 1}$$

$$\Rightarrow \pmb{x} = 13$$

... The required number is 13

Let the number be x.

Then, we have:

$$\Rightarrow 2x + 4 = \frac{26}{5}$$

$$\Rightarrow 2x = \frac{26}{5} - 4$$

$$\Rightarrow 2x = \frac{26-26}{5}$$

$$\Rightarrow x = \frac{6^3}{10_5}$$

$$\Rightarrow x = \frac{1}{2}$$

 \therefore The required fraction is $\frac{3}{5}$.

Q4

Answer:

er is 48. Let the required number be x.

Then, we have:

$$\Rightarrow x + \frac{x}{2} = 72$$

$$\Rightarrow \frac{2x+x}{2} = 72$$

$$\Rightarrow \frac{3x}{2} = 75$$

$$\Rightarrow 3x = 72 \times 3$$

$$\Rightarrow \frac{3x}{2} = 72$$

$$\Rightarrow 3x = 72 \times 2$$

$$\Rightarrow x = \frac{7 \cdot 2^{24} \times 2}{3}$$

$$= 48$$

 \therefore The required number is 48.

Q5

Answer:

Let the required number be x.

Then, we have:

$$\Rightarrow x + \frac{2x}{3} = 55$$

$$\Rightarrow \frac{3x+2x}{3} = 55$$
$$\Rightarrow 5x = 55 \times 3$$

$$\Rightarrow 5x = 55 \times 3$$

$$\Rightarrow x = \frac{-5 \cdot 5^{11} \times 5^{11}}{5_1}$$

.: The required number is 33.

Let the required number be x.

Then, we have:

$$\Rightarrow 4x - x = 45$$

$$\Rightarrow 3x = \frac{45}{3}$$

$$\Rightarrow x = 15$$

 \therefore The required number is 15.

Q7

Answer:

Let the number be x.

Then, we have:

$$(x-21)=(71-x)$$

$$\Rightarrow x + x = 71 + 21$$

$$\Rightarrow 2x = 92$$

$$\Rightarrow x = \frac{-9-2}{2}$$

$$\Rightarrow r = 46$$

... The required number is 46.

08

Answer:

Let the original number be x.

Then, we have:

$$\Rightarrow \frac{2}{3}x = x - 20$$

$$\Rightarrow \frac{2x}{3} - x = -20$$

$$\Rightarrow \frac{3}{2x-3x} = -20$$

$$\Rightarrow -\vec{x} = -20 \times 3$$

$$\Rightarrow x = 60$$

 \therefore The original number is 60.

Q9

Answer:

Let the number be x.

Then, the other number will be $\frac{2x}{5}$.

Now, we have:

$$\Rightarrow x + \frac{2x}{x} =$$

$$\Rightarrow \frac{5x+2x}{5}$$

$$\Rightarrow \frac{7x}{} = 70$$

$$\Rightarrow x = \frac{7 \cdot 0^{10}}{7}$$

 \therefore Other number = $50 \times \frac{2}{5} = 20$

Hence, the numbers are 50 and 20.

Q10

Answer:

Let the number be x.

Then, we have:

$$\frac{2}{3}x = \frac{1}{3}x + 3$$

$$\Rightarrow \frac{1}{3} x = \frac{2x}{3} - 3$$

$$\Rightarrow \frac{x}{3} - \frac{2x}{3} = -3$$

$$\Rightarrow \frac{x-2x}{3} = -3$$

$$\Rightarrow x - 2x = 3 \times (-3)$$

$$\Rightarrow -x = -9$$

... The required number is 9.

Let the number be x.

Then, we have:

$$\Rightarrow \frac{x}{5} + 5 = \frac{x}{4} - 5$$

$$\Rightarrow \frac{x}{5} - \frac{x}{4} = -5 - 5$$

$$\Rightarrow \frac{-x}{20} = -10$$

$$\Rightarrow x = 200$$

... The required number is 200.

Q12

Answer:

Let the two consecutive natural number be x and (x+1).

Then, we have:

$$x + (x+1) = 63$$

$$\Rightarrow x + x + 1 = 63$$

$$\Rightarrow 2x = 63 - 1$$

$$\Rightarrow x = \frac{6 \cdot 2^{31}}{2}$$

$$\Rightarrow x = 31$$

... The required numbers are 31 and 32 (i.e., 31+1).

Q13

Answer:

Let the two consecutive odd integers whose sum is 76 be x and (x+2).

Then,
$$x + x + 2 = 76$$

$$\Rightarrow 2x + 2 = 76$$

$$\Rightarrow 2x = 76 - 2$$

$$\Rightarrow x = 74 \div 2$$

$$\Rightarrow x = 37$$

:. The required integers are 37 and 39 (i.e., 37 + 2).

Q14

Answer:

Let the three consecutive positive even integers be x, (x+2) and (x+4).

Let x be the even number.

Then,
$$x + x + 2 + x + 4 = 90$$

$$\Rightarrow 3x = 90 - 6$$

$$\Rightarrow 3x = 84$$

$$\Rightarrow x = \frac{84}{3} = 28$$

... The required numbers are 28, 30 and 32.

Let the two parts be x and (184 - x).

Then, we have:

$$\frac{1}{3}x = \frac{1}{7}(184 - x) + 8$$

$$\Rightarrow \frac{1}{3}x - \frac{1}{7}(184 - x) = 8$$

$$\Rightarrow \frac{1}{3}x - \frac{184}{7} + \frac{x}{7} = 8$$

$$\Rightarrow \frac{1}{3}x + \frac{1}{7}x = \frac{184}{7} + 8$$

$$\Rightarrow \frac{7x+3x}{21} = 8 + \frac{184}{7} \\ \Rightarrow \frac{10x}{21} = \frac{56+184}{7}$$

$$\Rightarrow x = \frac{240 \times 21}{7 \times 10}$$

=72

Now, other part =184 - 72 = 112

... The two parts are 72 and 112.

Q16

Answer:

Let the number of five rupee notes be x.

Then, the number of ten rupee notes will be (90-x).

According to the question, we have:

$$5x + 10(90 - x) = 500$$

$$\Rightarrow 5x + 900 - 10x = 500$$

$$\Rightarrow -5x = -400$$

$$\Rightarrow x = 80$$

Number of ten rupee notes = 90 - 80 = 10

... There are 80 five rupee notes and 10 ten rupee notes.

Q17

Answer:

Let the numbers of 50 paise coins and 25 paise coins be x and 2x, respectively.

Then, we have:

$$50x + 25 \times 2x = 3400$$

$$\Rightarrow 50x + 50x = 3400$$

$$\Rightarrow 100x = 3400$$

$$\Rightarrow x = 34$$

 \therefore Number of 50 paise coins = 34

and number of 25 paise coins = 68

Q18

Answer:

Let the present ages of Raju and his cousin be (x-19) yrs and x yrs.

According to the question, we have:

$$\frac{(x-19)+5}{x+5} = \frac{2}{3}$$

$$\Rightarrow 3(x-14) = 2x+10$$

$$\Rightarrow 3x - 42 = 2x + 10$$

$$\Rightarrow x = 52$$

∴ Age of Raju's cousin = 52 yrs

and age of Raju = 52 - 19 = 33 yrs

Let the age of the son and the father be x yrs and (x+30) yrs, respectively.

According to the question, we have:

$$3 \times (x+12) = x+30+12$$

$$\Rightarrow 3x + 36 = x + 42$$

$$\Rightarrow 3x - x = 42 - 36$$

$$\Rightarrow 2x = 6$$

$$\Rightarrow x = 3$$

$$\therefore$$
 Son's age = 3 yrs

Father's age =
$$(x + 30)$$
 yrs = $(3 + 30)$ yrs = 33 yrs

Q20

Answer:

Given ratio of Sonal's and Manoj's ages $\,=7\,:\,5$

Let the ages of Sonal and Manoj be 7x yrs and 5x yrs.

According to the question, we have:

$$\frac{7x+10}{5x+10} = \frac{9}{7}$$

$$\Rightarrow 7(7x+10) = 9(5x+10)$$

$$\Rightarrow 49x + 70 = 45x + 90$$

$$\Rightarrow 49x - 45x = 90 - 70$$

$$\Rightarrow 4x = 20$$

$$\Rightarrow x = 5$$

∴ Sonal's present age is $7 \times 5=35$ yrs

Manoj's present age is $5 \times 5 = 25$ yrs

Q21

Answer:

Let x yrs be the present age of son.

Then, the age of the son 5 years ago would be (x-5) yrs

Then, Age of father =
$$7\left(x-5\right)$$
 yrs

After 5 yrs, the age of the son will be x+5 yrs

Then, Age of father
$$=3\left(x+5\right)$$
 yrs

Now, we have 3(x+5) = 7(x-5) + 10

$$\Rightarrow 3x + 15 = 7x - 35 + 10$$

$$\Rightarrow 4x = 40$$

$$\Rightarrow x = 10$$

 \therefore Present age of the father is = 3(x+5)-5

$$= 3 \left(10 + 5 \right) - 5$$
$$= 40 \text{ yrs}$$

Let x be the present age of Manoj.

According to the question, we have:

$$\Rightarrow x + 12 = 3(x - 4)$$

$$\Rightarrow x + 12 = 3x - 12$$

$$\Rightarrow 2x = 24$$

$$\Rightarrow x = 12$$

.: Manoj's present age is 12 years.

Q23

Answer:

Let x be the total marks.

According to the question, we have:

$$40\%$$
 of $x = 185 + 15$

$$\Rightarrow \frac{40x}{100} = 200$$

$$\Rightarrow 40x = 200 \times 100$$

$$\Rightarrow 40x = 20000$$

$$\Rightarrow x = 500$$

 \therefore Total marks = 500

Q24

Answer:

Let x be the digit in the units place.

Sum of the units and tens digits = 8

Then, tens digit =
$$(8-x)$$

$$\therefore$$
 The number is $10(8-x)+x$.

Now,
$$10(8-x) + x + 18 = 10x + (8-x)$$

$$\Rightarrow 80 - 10x + x + 18 = 10x + 8 - x$$

$$\Rightarrow 98 - 9x = 9x + 8$$

$$\Rightarrow 18x = 90$$

$$\Rightarrow x = 5$$

i.e., tens digit=
$$(8-5)=3$$

 \therefore Required number= $10(8-5)+5=10\times3+5=35$

Q25

Answer:

Let Rs x be the cost of the chair.

Then, the cost of the table is Rs (x + 75).

Now,
$$3(x+75)+2x=1850$$

$$\Rightarrow 3x + 225 + 2x = 1850$$

$$\Rightarrow 5x = 1625$$

$$\Rightarrow x = \frac{1625}{5} = 325$$

 \therefore Cost of the chair = Rs 325; cost of the table = (325+75)=Rs 400

Q26

Answer:

Let the cost price of the article be Rs x.

According to the question, we have:

$$\mathrm{SP} = \mathbf{Rs}\ 495$$

∴ Gain
$$\% = \frac{Gain}{CP} \times 100$$

$$\Rightarrow 10 = \frac{\text{Gain}}{x} \times 100$$

$$\Rightarrow$$
 Gain $= \frac{10x}{100} =$ Rs $\frac{x}{10}$

Now,
$$CP + Gain = SP$$

$$\Rightarrow x + \frac{x}{10} = 495$$

$$\Rightarrow \frac{x+10x}{10} = 495$$

$$\Rightarrow 11x = 495 \times 10$$

$$\Rightarrow x = rac{495 imes 10}{11}$$

$$\Rightarrow x = \frac{4950}{11}$$

$$\Rightarrow x = 450$$

$$\therefore$$
 CP = Rs 450

Let the length and breadth of the rectangular field be l m and b m, respectively.

According to the question, we have:

$$2(l+b) = 150$$
 ...(i)
 $\Rightarrow l+b = 75$

Given that l=2b ...(ii)

Using (ii) in (i), we have:

$$2b + b = 75$$

$$\Rightarrow 3b = 75$$

$$\Rightarrow b = 25$$

 $\therefore l = 50 \text{ m} \text{ and } b = 25 \text{ m}$

Q28

Answer:

Let the length of third side be x m. Then, the length of the

two equal sides will be (2x-5) m.

$$(2x-5)+(2x-5)+x=55$$

$$\Rightarrow 2x - 5 + 2x - 5 + x = 55$$

$$\Rightarrow 5x - 10 = 55$$

$$\Rightarrow 5x = 65$$

$$\Rightarrow x = \frac{65}{5} = 13$$

:. Length of the third side=13 m

And length of the other two equal sides= $(2 \times 13) - 5 = 21$ m Q29 Answer:

Q29

Answer:

Let the two complementary angles be x° and (90)

According to the question, we have:

$$x - (90 - x) = 8$$

$$\Rightarrow x - 90 + x = 8$$

$$\Rightarrow 2x = 98$$

$$\Rightarrow x = 49$$

:. The measures of the complementary angles are 49° and $(90-49)^{\circ}=41^{\circ}$.

Q30

Answer:

Let the two supplementary angles be x° and $(180 - x)^{\circ}$.

$$\therefore x - (180 - x) = 44$$

$$\Rightarrow x - 180 + x = 44$$

$$\Rightarrow 2x = 224$$

$$\Rightarrow x = 112$$

 \therefore The measures of the supplementary angles are 112° and (180 – 112)°, i.e., 68°.

Q31

Answer:

Let the base angles of the isosceles triangle be x° each.

Then, the measure the vertex angle will be $(2x)^{\circ}$.

According to the question, we have:

$$x + x + 2x = 180$$
 (Sum of three sides of a triangle)

$$\Rightarrow 4x = 180$$

$$\Rightarrow x = \frac{180}{4}$$

$$\Rightarrow x = 45$$

 \therefore Each base angle measures 45° and the vertex angle measures $(2 \times 45)^{\circ}$, i.e., 90°.

Let the length of the total journey be x km.

According to the question, we have:

$$\frac{3}{5}x + \frac{1}{4}x + \frac{1}{8}x + 2 = x$$

$$\Rightarrow \frac{24x+10x+5x+80}{40} = x$$

$$\Rightarrow 39x + 80 = 40x$$

$$\Rightarrow x = 80$$

... The length of his total journey is 80 km.

Q33

Answer:

Let x be the number of days of his absence.

 \therefore Number of days of his presence = (20-x)

Now,
$$(20-x)120-10x=1880$$

$$\Rightarrow 2400 - 120x - 10x = 1880$$

$$\Rightarrow 2400 - 1880 = 130x$$

$$\Rightarrow 130x = 520$$

$$\Rightarrow x = 4$$

 \therefore Number of days of his absence = 4

Q34

Answer:

Let the worth of Hari Babu's property be Rs \boldsymbol{x} .

According to the question, we have:

Son's share
$$=\frac{1}{4}x$$

Daughter's share
$$=\frac{1}{3}x$$

Wife's share
$$=\left\{x-\left(\frac{1}{4}\,x+\frac{1}{3}\,x\right)\right\}$$

It is given that his wife's share is Rs 18000.

i.e.,
$$x - \left(\frac{1}{4}x + \frac{1}{3}x\right) = 18000$$

$$\Rightarrow x - \left(\frac{1}{3}x + \frac{1}{4}x\right) = 18000$$

$$\Rightarrow x - \frac{7x}{12} = 18000$$

$$\Rightarrow \frac{5x}{12} = 18000$$

$$\Rightarrow x = \frac{18000^{3600} \times 12}{12}$$

$$\Rightarrow x = 43200$$

... Hari Babu's total property is worth Rs 43200.

Q35

Answer:

Let the volume of the pure alcohol be x ml.

Initial concentration=15%

So, initial amount of alcohol in the solution will be = $\frac{15}{100} \times 400 = 60$ ml

To make the strength of the solution 32%, we will keep the amount of water constant and ad On adding pure alcohol, the volume of the solution increases to 400 + x.

According to the question, we have:

$$\frac{x+60}{400+x} = \frac{32}{100}$$

$$\Rightarrow 100x + 6000 = 12800 + 32x$$

$$\Rightarrow 100x - 32x = 12800 - 6000$$

$$\Rightarrow 68x = 6800$$

$$\Rightarrow x = 100$$

So, amount of pure alcohol to be added=100 ml

Linear Equations in One Variable Ex 7C

Q1 Answer:

$$\left(d\right) \frac{1}{36}$$

We have:

$$5x - \frac{3}{4} = 2x - \frac{2}{3}$$

$$\Rightarrow 5x - 2x = \frac{-2}{3} + \frac{3}{4}$$

$$\Rightarrow 3\pmb{x} = rac{-8+9}{12}$$

$$\Rightarrow x = \frac{1}{12 \times 3}$$

$$\Rightarrow x = \frac{1}{36}$$

Q2

Answer:

$$\left(\mathbf{d}\right)\frac{4}{3}$$

We have:

$$2z + \frac{8}{3} = \frac{1}{4}z + 5$$

$$\Rightarrow 2z - \frac{1}{4}z = 5 - \frac{8}{3}$$

$$\Rightarrow \frac{8z-z}{4} = \frac{15-8}{3}$$

$$\Rightarrow \frac{7z}{4} = \frac{7}{3}$$

$$\Rightarrow z = \frac{\overline{\tau}^1 \times 4}{3 \times \overline{\tau}_1}$$

$$\Rightarrow z = \frac{4}{3}$$

О3

Answer:

$$(2n+5) = 3(3n-10)$$

$$\begin{array}{l} \Rightarrow 2n+5=9n-30 \\ \Rightarrow 2n-9n=-30-5 \end{array}$$

$$\Rightarrow$$
 $\angle 7n = \angle 35$

$$\Rightarrow n = \frac{3.5}{3}$$

$$\Rightarrow n = 5$$

Q4

Answer

(c) 8

We have:

$$\frac{x-1}{x+1} = \frac{7}{9}$$

$$\Rightarrow 9(x-1) = 7(x+1)$$

$$\Rightarrow 9x - 9 = 7x + 7$$

$$\Rightarrow 9x - 7x = 7 + 9$$

$$\Rightarrow 2x = 16$$

$$\Rightarrow x = \frac{-1-6}{2}$$

$$\Rightarrow x = 8$$

Q5

Answer:

We have:

$$8(2x-5)-6(3x-7)=1$$

$$\Rightarrow 16x - 40 - 18x + 42 = 1$$

$$\Rightarrow -2x+2=1$$

$$\Rightarrow -2x = 1 - 2$$

$$\Rightarrow x = \frac{1}{2}$$

$$\Rightarrow x = \frac{1}{2}$$

(d) 30

We have:

We have:
$$\frac{x}{2} - 1 = \frac{x}{3} + 4$$

$$\Rightarrow \frac{x-2}{2} = \frac{x+12}{3}$$

$$\Rightarrow 3(x-2) = 2(x+12)$$

$$\Rightarrow 3x - 6 = 2x + 24$$

$$\Rightarrow 3x - 2x = 24 + 6$$

 $\Rightarrow x = 30$

Q7

Answer:

$$\frac{2x-1}{3} = \frac{x-2}{3} + 1$$

$$\Rightarrow \frac{2x-1}{3} = \frac{(x-2)+3}{3} \\ \Rightarrow 3(2x-1) = 3(x+1)$$

$$\rightarrow 6x - 3 - 3x + 3$$

$$\Rightarrow 6x - 3 = 3x + 3$$

$$\Rightarrow 6x - 3x = 3 + 3$$

$$\Rightarrow 3x = 6$$

$$\Rightarrow 3x = 0$$

Answer:

Q8

(b) 26

Let the consecutive whole numbers be x and (x + 1).

Then,
$$x + (x + 1) = 53$$

$$\Rightarrow 2x+1=53$$

$$\Rightarrow 2x = 53 - 1$$

$$\Rightarrow x = \frac{5-2^{26}}{2}$$

$$\Rightarrow x = 26$$

Q9

Answer:

Then,
$$x + (x + 2) = 86$$

$$\Rightarrow 2x + 2 = 86$$

$$\Rightarrow 2x = 86 - 3$$

$$\Rightarrow x = \frac{84}{7}$$

$$\Rightarrow x = 42$$

x = 42 $\therefore \text{ The required numbers are } 42 \text{ and } (42+2) \text{ i.e., } 44.$ Q10

Answer:

(b) 17

Let the two consecutive odd num

Then, (x+1) + (x+3) $\Rightarrow 2x + 4 = 36$ $\Rightarrow 2x - 6$

Then,
$$(x+1)+(x+3)=36$$

$$\rightarrow 2r \pm 4 - 36$$

$$\Rightarrow 2x = 36 - 4$$

$$\Rightarrow x = \frac{32}{2}$$

$$\Rightarrow x = 16$$

... The smaller number is

Q11

Answer:

(d)11

Let the whole number be x.

Then,
$$2x + 9 = 31$$

$$\Rightarrow 2x = 31 - 9$$

$$\Rightarrow 2x = 22$$

$$\Rightarrow x = \frac{\frac{2}{2} \cdot 2^{11}}{2}$$

$$\Rightarrow x = 11$$

Q12

Answer:

(a) 6

Let the whole number be x.

Then,
$$3x + 6 = 24$$

$$\Rightarrow 3x = 24 - 6$$

$$\Rightarrow 3x = 18$$

$$\Rightarrow x = \frac{1}{3}$$

$$\Rightarrow x = 6$$

(a) 30

Let the original number be x.

Then,
$$\frac{2}{3}x = x - 10$$

$$\Rightarrow 2x = 3x - 30$$

$$\Rightarrow 2x - 3x = -30$$

$$\Rightarrow /x = /30$$

$$\Rightarrow x = 30$$

: The required number is 30.

Q14

Answer:

(b) 50°

Let the angle be x° .

Then, complementary of $x = 90^{\circ} - x^{\circ}$

According to the question, we have:

$$x - 90 - x = 10$$

$$\Rightarrow 2x = 90 + 10$$

$$\Rightarrow 2x = 100$$

$$\Rightarrow x = 50$$

So, the larger angle is 50°.

Q15

Answer:

(b)
$$80^{\circ}$$

Let the angle be x° .

Then, complementary angle of $x = 180^{\circ} - x^{\circ}$

According to the question, we have:

$$x - (180 - x) = 20$$

$$\Rightarrow x - 180 + x = 20$$

$$\Rightarrow 2x = 10 + 180$$

$$\Rightarrow 2x = 200$$

$$\Rightarrow x = 100$$

Hence, the smaller angle is 80°

Q16

Answer:

(c)15 years

Let the present ages of A and B be 5x and 3x, respectively.

According to the question, we have:

$$\frac{5x+6}{3x+6} = \frac{7}{5}$$

$$\Rightarrow 25x + 30 = 21x + 42$$

$$\Rightarrow 25x - 21x = 42 - 30$$

$$\Rightarrow 4x = 12$$

$$\Rightarrow x = \frac{1 - 2^3}{4}$$

$$\Rightarrow x = 3$$

 \therefore A's present age=5 × 3 years=15 years

Q17

Answer:

(b) 20

Let the number be x.

Then,
$$5x = x + 80$$

$$\Rightarrow 5x - x = 80$$

$$\Rightarrow 4x = 80$$

$$\Rightarrow x = \frac{8 \cdot 0^{20}}{4}$$

$$\Rightarrow x = 20$$

.: The required number is 20.

Q18 Answer:

(c) 32 m

Let the width of the rectangle be x. Then, its length will be 3x.

Perimeter of the rectangle = 96 m

Now,
$$2(l+b) = 96$$

$$\Rightarrow 2(3x+x)=96$$

$$\Rightarrow 2 \times 4x = 96$$

$$\Rightarrow 8x = 96$$

$$\Rightarrow x = \frac{9 \cdot 6^{12}}{2}$$

$$\Rightarrow x = 12$$

 \therefore Length of the rectangle = 3×12 m = 36 m