25. Graphs

Exercise 25A

1. Question

On a graph paper draw the coordinate axes X'OX and YOY', and plot each of the following points:

- (i) A(4,3) (ii) B(2,6)
- (iii) C(-3,5) (iv) D(-5,2)
- (v) E(-2,-3) (vi) F(-5,-3)
- (vii) G(5,-4) (viii) H(3,-3)

Answer

Let X'OX and YOY' be the coordinate axes.

- (i) On the x-axis, take 4 units to the right of the y axis; and then on the y-axis, take 3 units above the x-axis. Thus, we obtain the point A(4,3)
- (ii) On the x-axis, take 2 units to the right of the y-axis; and then on the y-axis, take 6 units above the x-axis. Thus, we obtain the point B(2,6)
- (iii) On the x-axis, take 3 units to the left of the y-axis; and then on the y-axis, take 5 units above the x-axis. Thus, we obtain the point C(-3,5)
- (iv) On the x-axis, take 5 units to the left of the y-axis; and then on the y-axis, take 2 units above the x-axis. Thus, we obtain the point D(-5,2)
- (v) On the x-axis, take 2 units to the left of the y-axis; and then on the y-axis, take 3 units below the x-axis. Thus, we obtain the point E(-2,-3)
- (vi) On the x-axis, take 5 units to the left of the y-axis; and then on the y-axis, take 3 units below the x-axis. Thus, we obtain the point F(-5,-3)
- (vii) On the x-axis, take 5 units to the right of the y-axis; and then on the y-axis, take 4 units below the x-axis. Thus, we obtain the point G(5,-4)
- (viii) On the x-axis, take 3 units to the right of the y-axis; and then on the y-axis, take 3 units below the x-axis. Thus, we obtain the point H(3,-3)

Exercise 25B

1 A. Question

Draw the graph of the function y = 3x.

Answer

The given function is y=3x. For some different values of x, the corresponding values of y are given below:

x	0	1	2
y	0	3	6

Now, let us plot the points O(0,0), A(1,3) and B(2,6).

∴ Now, we obtain our required graph.

1 B. Question

From the graph, find the value of y, when

(i)
$$x = 3$$
 (ii) $x = 5$ (iii) $x = 6$

Answer

(i) Our point C to be plotted lies on function y = 3x.

Here, first plotting y = 3x.

Here, x = 3.

 \therefore Now for abscissa equal to 3, we plot the point on y = 3x, ie y = 3 × 3 = 9

Hence, the value of y is 9

(ii) Our point to be plotted lies on function y = 3x.

Here, first plotting y = 3x.

Here, x = 5.

 \therefore Now for abscissa equal to 5, we plot the point on y = 3x, ie y = 3 x 5 = 15

Hence, the value of y is 15

(iii) Our point to be plotted lies on function y = 3x.

∴Here, first plotting y = 3x.

Here, x = 6.

 \therefore Now for abscissa equal to 6, we plot the point on y = 3x, ie y = 3 × 6 = 18

Hence, the value of y is 18

2 A. Question

Draw the graph of the function P = 4x.

Answer

The given function is P = 4x. For some different values of x, the corresponding values of P are given below:

X	0	1	2
P	0	4	8

Now let us plot the points, O(0,0), A(1,4) and B(2,8)

∴ Now, we obtain our required graph.

2 B. Question

From the graph, find the value of P, when

(i)
$$x = 3$$
 (ii) $x = 4$ (iii) $x = 6$

Answer

(i) Our point C to be plotted lies on function P = 4x.

∴Here, first plotting P = 4x.

Here, x = 3.

 \therefore Now for abscissa equal to 3, we plot the point on P = 4x, ie P = 4 x 3 = 12

Hence, the value of P is 12

(ii) Our point D to be plotted lies on function P = 4x.

∴Here, first plotting P = 4x.

Here, x = 4.

 \therefore Now for abscissa equal to 4, we plot the point on P = 4x, ie P = 4 x 4 = 16

Hence, the value of P is 16

(iii) Our point E to be plotted lies on function P = 4x.

∴Here, first plotting P = 4x.

Here, x = 6.

 \therefore Now for abscissa equal to 6, we plot the point on P = 4x, ie P = $4 \times 6 = 24$

Hence, the value of P is 24

3 A. Question

Draw the graph of the function $A = x^2$.

Answer

The given function is $A=x^2$.

For some different values of x, the corresponding values of A are given below:

x	0	1	2
A	0	1	4

Now let us plot the points, O(0,0), S(1,1) and P(2,4).

∴ Now we obtain the required graph.

3 B. Question

From the graph, find the value of A, When

(i)
$$x = 2$$
 (ii) $x = 3$ (iii) $x = 4$

Answer

- (i) Our point B to be plotted lies on function $A = x^2$.
- ∴Here, first plotting $A = x^2$.

Here, x = 2.

- \therefore Now for abscissa equal to 2, we plot the point on A = x^2 ., ie A = 2^2 = 4 Hence, the value of A is 4
- (ii) Our point C to be plotted lies on function $A = x^2$.
- ∴Here, first plotting $A = x^2$.

Here, x = 3.

- \therefore Now for abscissa equal to 3, we plot the point on A = x^2 ., ie A = 3^2 = 9 Hence, the value of A is 9
- (iii) Our point to be plotted lies on function $A = x^2$.
- ∴Here, first plotting $A = x^2$.

Here, x = 4.

 \therefore Now for abscissa equal to 4, we plot the point on A = x^2 ., ie A = 4^2 = 16

Hence, the value of A is 16

Exercise 25C

1. Question

In which of the following quadrants does the point P(3,6) lie?

- A. I
- B. II
- C. III
- D. IV

Answer

Here, given point is P(3,6).

Both the coordinates are positive.

Hence, point P lies in first quadrant.

2. Question

In which of the following quadrants does the point (-7,-1) lie?

- A. I
- B. II
- C. III
- D. IV

Answer

Here, given point is (-7,-1).

Both the coordinates are negative.

Hence, given point lies in third quadrant.

3. Question

In which of the following quadrants does the point A(2, -3) lie?

- A. I
- B. II
- C. III
- D. IV

Answer

Here, given point is A(2,-3).

Here, abscissa of a point is positive and ordinate is negative.

Hence, given point lies in fourth quadrant.

4. Question

In which of the following quadrants does the point Q(-4,1) lie?		
A. I		
B. II		
C. III		
D. IV		
Answer		
Here, given point is $Q(-4,1)$		
Here, abscissa of a point is negative and ordinate is positive.		
Hence, given point lies in second quadrant.		
5. Question		
The abscissa of a point is its distance from the		

- A. origin
- B. x-axis
- C. y-axis
- D. none of these

Answer

We know that the abscissa of a point is its distance from the y-axis.

6. Question

The graph of y = a is

- A. the x-axis
- B. the y-axis
- C. a line parallel to the y-axis
- D. a line parallel to the x-axis

Answer

Here, the line y = a is parallel x-axis.

7. Question

The equation representing the y-axis is

- A. x = 0
- B. y = 0
- C. x = a
- D. y = a

Answer

We know that the graph x = a is a line parallel to the y-axis.

Hence, for x = 0, line represents y axis.