Collection and Organisation Ex 21A

Q1

Answer:

- (i) Data: Information in the form of numerical figures is known as data.
- (ii) Raw data: Data that is obtained in the original form is known as raw data.
- (iii) Array: When the raw data is obtained in ascending or descending order of magnitude, it is known as array.
- (iv) Tabulation of data: Arranging the data in a systematic way in the form of a table is known as the tabulation of the data.
- (v) Observations: Each numerical figure in a data is known as an observation.
- (vi) Frequency of an observation: Number of times an observation occurs in the data is known as the frequency of an observation.
- (vii) Statistics: The subject that deals with the collection, presentation, analysis and interpretation of the numerical data is known as statistics.

Q2

Answer:

Data in the ascending order:

1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6

Observation	Frequency
1	2
2	5
3	1
4	4
5	6
6	2

Q3

Daily wages in the ascending order:

130, 130, 150, 150, 150, 150, 180, 180, 180, 180, 180, 180, 200, 200, 200

Frequency table:

Daily wages (in Rs.)	No. of workers
130	2
150	4
180	6
200	3

Q4

Answer:

Data in ascending order:

 $5,\, 5,\, 6,\, 6,\, 6,\, 6,\, 7,\, 7,\, 7,\, 7,\, 7,\, 7,\, 7,\, 7,\, 8,\, 8,\, 8,\, 8,\, 8,\, 9,\, 9,\, 10,\, 10$

Frequency table:

Observation	Frequency
5	2
6	4
7	7
8	5
9	2
10	2

Q5

Answer:

- (i) numerical
- (ii) original
- (iii) array
- (iv) frequency
- (v) tabulation

Q6

Answer:

First five natural numbers are 1, 2, 3, 4 and 5.

 $\label{eq:mean_model} \text{Mean of the first five natural numbers} = \frac{\text{Sum of the given observations}}{\text{Number of given observations}}$

$$=\frac{1+2+3+4+5}{5}=\frac{15}{5}=3$$

Hence, mean of the first five natural numbers is 3.

Q7

Answer:

First six odd natural numbers are 1, 3, 5, 7, 9 and 11.

 $\mbox{Mean of the first six natural numbers} = \frac{\mbox{Sum of the given observations}}{\mbox{Number of the given observations}}$

$$=\frac{1+3+5+7+9+11}{6}=\frac{36}{6}=6$$

Mean of the first six odd natural numbers is 6.

Q8

First seven even natural numbers are 2, 4, 6, 8, 10, 12 and 14.

 $\label{eq:mean_problem} \text{Mean of the first seven even natural numbers} = \frac{\text{Sum of the given observations}}{\text{Number of the given observations}}$

$$=\frac{2+4+6+8+10+12+14}{7}=\frac{56}{7}=8$$

Mean of the first seven even natural numbers is 8.

Q9

Answer:

First five prime numbers are 2, 3, 5, 7 and 11.

 $\label{eq:mean_section} \text{Mean of the first five prime numbers} = \frac{\text{Sum of the given observations}}{\text{Number of the given observations}}$

$$=\frac{2+3+5+7+11}{5}=\frac{28}{5}=5.6$$

Mean of the first five prime numbers is 5.6.

Q10

Answer:

First six multiples of 5 are 5, 10, 15, 20, 25 and 30.

 $\label{eq:mean_model} \text{Mean of the first six multiples of 5} = \frac{\text{Sum of the given observations}}{\text{Number of the given observations}}$

$$\frac{5+10+15+20+25+30}{6} = \frac{105}{6} = 17.5$$

Q11

Answer:

Weight (in kg)	Number of workers	(fi × xi)
60	4	240
63	5	315
66	3	198
72	1	72
75	2	150
	$\sum f_i = 15$	$\sum (f_i \times x_i) = 975$

Mean weight =
$$\frac{\Sigma(f_t \times x_t)}{\Sigma f_t} = \frac{975}{15} = 65 \text{ kg}$$

Q12

Answer:

ž	Daily wages (in Rs.)	Number of workers	(f v v)
	Daily Wages (III Ks.)	(f)	$(f_i \times x_i)$
	140	14	1960
	150	16	2400
	160	15	2400
	180	7	1260
	190	8	1520
		$\sum f_i = 60$	$\sum (f_i \times x_i) = 9540$

Mean daily wages = $\frac{\Sigma(f_i \times x_i)}{\Sigma f_i} = \frac{9540}{60} = \mathrm{Rs} \ 159$

Height (in cm)	Number of plants	$(f_i \times x_i)$
58	20	1160
60	25	1500
62	15	930
64	8	512
66	12	792
74	10	740
	$\sum f_i = 90$	$\sum (f_i \times x_i) = 5634$

Mean height =
$$\frac{\Sigma(f_{\rm t} \times x_{\rm t})}{\Sigma f_{\rm t}} = \frac{5634}{90} = 62.6~{
m cm}$$

Q14

Answer:

Age (in years)	Number of players	$(f_i \times x_i)$
(x_i)	(f _i)	
14	15	210
15	14	210
16	10	160
17	8	136
18	3	54
	$\sum f_i = 50$	$\sum (f_i \times x_i) = 770$

Mean age =
$$\frac{\Sigma(f_i \times x_i)}{\Sigma f_i} = \frac{770}{50} = 15.4 \text{ years}$$

Q15

Answer:

Height (in cm)	Number of boys	$(f_i \times x_i)$
(x_i)	(f _i)	
165	9	1485
170	8	1360
175	11	1925
180	12	2160
	$\sum f_i = 40$	$\sum (f_i \times x_i) = 6930$

Mean height =
$$\frac{\Sigma(f_i \times x_i)}{\Sigma f_i} = \frac{6930}{40} = 173.25$$
 cm

Collection and Organisation Ex 21B

Q1

Answer:

We have to find the median of the following data.

(i) 3, 11, 7, 2, 5, 9, 9, 2 and 10

Arranging them in ascending order:

2, 2, 3, 5, 7, 9, 9, 10, 11


Number of terms, N= 9 It is an odd number.

Median = $\left(\frac{N+1}{2}\right)$ th observation

Median= $\left(\frac{9+1}{2}\right)$ th observation

Median = 5th observation

Median=7

(ii) 9, 25, 18, 15, 6, 16, 8, 22, 21

Arranging them in ascending order,

6, 8, 9, 15, 16, 18, 21, 22, 25

Number of terms, *N*=9

It is an odd number.

Median =
$$\left(\frac{N+1}{2}\right)$$
 th observation

Median =
$$\left(\frac{9+1}{2}\right)$$
 th observation

Median = 5th observation

Median=16

(iii) 21, 15, 6, 25, 18, 13, 20, 9, 16, 8, 22

Arranging them in ascending order:

6, 8, 9, 13, 15, 16, 18, 20, 21, 22, 25

Number of terms, N = 11It is an odd number.

Median =
$$\left(\frac{N+1}{2}\right)$$
 th observation

Median =
$$\left(\frac{11+1}{2}\right)$$
th observation

Median = 6th observation

Median=16

Q2

Answer

We have to find the median of the following data.

Arranging them in ascending order:

Number of terms, N = 8

$$\text{Median} = \frac{1}{2} \left\{ \left(\frac{N}{2} \right) \text{th observation} + \left(\frac{N}{2} + 1 \right) \text{th observation} \right\}$$

Median = $\frac{1}{2}$ (4th observation + 5th observation)

$$\text{Median} = \frac{1}{2} \left(19 + 21 \right) = 20$$

∴ Median= 20

(ii) 55, 60, 35, 51, 29, 63, 72, 91, 85, 82

Arranging them in ascending order:

29, 35, 51, 55, 60, 63, 72, 82, 85, 91

Number of terms, N = 10

Median =
$$\frac{1}{2}\left\{\left(\frac{N}{2}\right)\text{th observation} + \left(\frac{N}{2} + 1\right)\text{th observation}\right\}$$

Median = $\frac{1}{2}$ (5th observation +6th observation)

Median
$$=\frac{1}{2}(60+63)$$

$$\therefore$$
 Median = 61.5

Q3

Answer:

First 15 odd numbers are 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27 and 29.

Number of terms, N = 15

It is an odd number.

Median =
$$\left(\frac{N+1}{2}\right)$$
 th observation

Median =
$$\left(\frac{15+1}{2}\right)$$
 th observation

$$Median = 15$$

Q4

Answer

First 10 even numbers are 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20.

Number of terms, N=10

Median =
$$\frac{1}{2} \left\{ \left(\frac{N}{2} \right) \text{ th observation} + \left(\frac{N}{2} + 1 \right) \text{ th observation} \right\}$$

Median = $\frac{1}{2}$ (5th observation \neq 6th observation)

Median
$$=\frac{1}{2}(10+12)=11$$

Q5

Answer:

First 50 whole numbers are 0, 1, 2, 3, 4 ... and 49

Number of terms, N= 50

It is an even number.

Median
$$=\frac{1}{2}\left\{\left(\frac{N}{2}\right)$$
th observation $+\left(\frac{N}{2}+1\right)$ th observation $\right\}$
 $=\frac{1}{2}\left\{25 \text{ th observation } +26 \text{ th observation}\right\}$
 $=\frac{1}{2}\left\{24+25\right\}$
 $=24.5$

Q6

Marks of the students (out of 50) in an examination are given below:

20, 22, 26, 31, 40, 19, 17, 19, 25, 29, 23, 17, 24, 21, 35

Arranging the marks in ascending order:

17, 17, 19, 19, 20, 21, 22, 23, 24, 25, 26, 29, 31, 35, 40

Number of terms, N=15

This is an odd number.

Median =
$$\left(\frac{N+1}{2}\right)$$
th observation

Median =
$$\left(\frac{15+1}{2}\right)$$
 th observation

Median = 8th observation

Median = 23

Hence, the median marks are 23.

Q7

Answer:

Ages (in years) of 10 teachers in a school are given below:

Arranging them in ascending order:

Number of terms, N=10

It is an even number.

$$\text{Median} = \tfrac{1}{2} \left\{ \left(\tfrac{N}{2} \right) \text{th observation} + \left(\tfrac{N}{2} + 1 \right) \text{th observation} \right\}$$

Median =
$$\frac{1}{2}$$
 {5th observation + 6th observation}

Median
$$=\frac{1}{2}\{40+43\}$$

Median
$$= 41.5$$

Hence, the median age is 41.5 years

Q8

Answer:

Cumulative frequency table

Weight (in kg)	Number of boys	Cumulative frequency
45	8	8
46	5	13
48	6	19
50	9	28
52	7	35
54	4	39
55	2	41

Number of terms, N = 41

It is an odd number.

$$\begin{aligned} \text{Median} &= \left\{ \left(\frac{N+1}{2} \right) \text{th observation} \right\} \\ &= \left\{ \left(\frac{41+1}{2} \right) \text{th observation} \right\} \\ &= \left\{ 21 \text{th observation} \right\} \\ &= 50 \text{ kg} \end{aligned}$$

Hence, the median weight is 50 kg.

Arranging the terms in ascending order, we have:

Marks	15	17	20	22	25	30
Number of	3	5	9	4	6	10
students						

Cumulative frequency table:

Marks	Number of students	Cumulative frequency
(x _i)	(f;)	_
15	3	3
17	5	8
20	9	17
22	4	21
25	6	27
30	10	37

Number of terms, N = 37

$$\begin{aligned} \text{Median} &= \left\{ \left(\frac{N+1}{2} \right) \text{th observation} \right\} \\ &= \left\{ \left(\frac{37+1}{2} \right) \text{th observation} \right\} \\ &= 19 \, \text{th observation} \\ &= 22 \end{aligned}$$

Hence, the median is 22.

Q10

Answer:

Arranging the terms in ascending order:

Height (in cm)	151	152	153	154	155	156	157	
Number of students	6	3	12	4	10	8	7	\

Cumulative frequency table:

Height (in cm) (x)	Number of students (f;)	Cumulative frequency
151	6	6
152	3	9
153	12	21
154	4	25
155	10	35
156	8	43
157	7	50

Number of terms, N = 50

$$\begin{aligned} \text{Median} &= \frac{1}{2} \left\{ \left(\frac{N}{2} \right) \text{th observation} + \left(\frac{N}{2} + 1 \right) \text{th observation} \right\} \\ &= \frac{1}{2} \left\{ 25 \text{th observation} + 26 \text{th observation} \right\} \\ &= \frac{1}{2} \left\{ 154 + 155 \right\} \end{aligned}$$

Median =154.5

Collection and Organisation Ex 21C

Q1

Answer:

We have to find the mode of the given data.

Mode - It is that value of the variables that occurs most frequently.

Here, 8 occurs most frequently. Hence, the mode of the data is 8.

Here, 27 occurs most frequently. Hence, the mode of the data is 27.

Q2

Answer:

Following are the ages (in years) of 11 cricket players:

Mode is the value of the variable that occurs most frequently

Here, 32 occurs maximum number of times.

Hence, 32 is the mode of the ages.

Q3

Answer:

Daily wages (in Rs.)	Number of workers	Cumulative frequency	$(f_i \times x_i)$	
(x_i)	(f,)			
100	6	6	600	
125	8	14	1000	
150	9	23	1350	
175	12	35	2100	
200	10	45	2000	
	$N=\sum f_i=45$		$\sum (f_i \times x_i) = 7050$	

Here, N is 45, which is odd.

Median
$$= \left\{ \left(\frac{N+1}{2} \right) \text{ th observation} \right\}$$

 $= \left\{ \frac{45+1}{2} \right\} \text{ observation}$
 $= 23 \text{ th observation}$

$$\begin{split} & \text{Median} &= 150 \\ & \text{Mean} &= \frac{\sum (f_i \times x_i)}{\sum f_i} = \frac{7050}{45} = 156.67 \\ & \text{Mode} = 3 \bigg(\text{Median} \bigg) - 2 \bigg(\text{Mean} \bigg) \\ &= 3(150) - 2 \bigg(156.67 \bigg) \\ &= 450 - 313.34 \\ &= 136.6 \end{split}$$

Hence, the median is 150, the mean is 156.67 and the mode is 136.6.

Marks obtained	Number of	Cumulative	$(f_i \times x_i)$
(x_i)	students	frequency	
	(f _i)		
15	2	2	30
17	5	7	85
20	10	17	200
22	12	29	264
25	8	37	200
30	4	41	120
	$N=\sum f_i=41$		$\sum (f_i \times x_i) = 899$

Number of terms $\left(N\right)$ is 41, which is odd.

$$\begin{aligned} \text{Median} &= \left\{ \left(\frac{N+1}{2} \right) \text{th observation} \right\} \\ &= \left\{ 21 \text{th observation} \right\} \\ &= 22 \end{aligned}$$

$$\begin{aligned} \text{Median} &= 22 \\ \text{Mean} &= \frac{\sum (f_t \times x_t)}{\sum f_t} \\ &= \frac{899}{41} \end{aligned}$$

Mean
$$= 21.92$$

Using empirical formula:

Using empirical formula:
$$\begin{tabular}{ll} Mode &= 3 ig(Median ig) - 2 ig(Mean ig) \\ &= 66 - 43.84 \\ Mode &= 22.16 \end{tabular}$$
 Hence, the median is 22, the mean is 21.92 and the mode is 22.16.
$$\begin{tabular}{ll} Q5 \\ Answer: \\ We will prepare the table given below: \\ \end{tabular}$$

Weight (in kg)	Number of players	Cumulative	$(f_i \times x_i)$		
(x_i)	(f ₁)	frequency			
48	4	4	192		
50	3	7	150		
52	2	9	104		
54	2	11	108		
58	1	12	58		
	$N=\sum f_i=12$		$\sum (f_i \times x_i) = 612$		

Number of terms $\binom{N}{}$ is 12, which is an even number.

Median =
$$\frac{1}{2} \left\{ \left(\frac{N}{2} \right) \text{th observation} + \left(\frac{N}{2} + 1 \right) \text{th observation} \right\}$$

= $\left\{ 6 \text{ th observation} + 7 \text{ th observation} \right\}$
= $\frac{1}{2} \left\{ 50 + 50 \right\}$

$$egin{aligned} ext{Mean} &= rac{\sum (f_i imes x_i)}{\sum f_i} \ &= rac{612}{12} \end{aligned}$$

$$\mathbf{Mean}\ =\ 51$$

Using empirical formula:

$$\begin{aligned} \mathbf{Mode} &= 3\bigg(\mathbf{Median}\bigg) - 2\bigg(\mathbf{Mean}\bigg) \\ &= 150 - 102 \\ \mathbf{Mode} &= 48 \end{aligned}$$