Mensuration Exercise 20A

Name	Figure	Perimeter	Area
Rectangle	b a	2 (a + b)	ab
Square	a a a	4a	a²
Triangle	a hi c	a + b + c = 2s	$1 = \frac{1}{2} \times b \times h$ $2 = \sqrt{s(s-a)(s-b)(s-c)}$
Right triangle	h	b + h + d	$\frac{1}{2}$ bh
Equilateral triangle	a h a	За	1. $\frac{1}{2}$ ah 2. $\frac{\sqrt{3}}{4}$ a ²
Isosceles right triangle	a d	2a + d	$\frac{1}{2}$ a ²
Parallelogram	a b/h/b	2 (a + b)	ah

	<u> </u>		
Rhombus	a d_1 d_2 a	4a	$\frac{1}{2} d_1 d_2$
Trapezium	h a	Sum of its four sides	1/2 h (a + b)
Circle	O r	2πr	πr²
Semicircle	o r	πr + 2r	$\frac{1}{2} \pi^2$
Ring (shaded region)			$\pi (R^2 - r^2)$
Sector of a circle	A C	I + 2r where I = (θ/360) × 2πr	θ/360°× πr²

Q1

Answer:

```
(i) Length = 24.5 m
Breadth = 18 m
```

∴ Area of the rectangle = Length × Breadth = 24.5 m × 18 m = 441 m²

(ii) Length = 12.5 m

Breadth = $8 \text{ dm} = (8 \times 10) = 80 \text{ cm} = 0.8 \text{ m}$ [since 1 dm = 10 cm and 1 m = 100 cm]

 \therefore Area of the rectangle = Length \times Breadth $= 12.5 \text{ m} \times 0.8 \text{ m}$ $= 10 \text{ m}^2$

We know that all the angles of a rectangle are 90° and the diagonal divides the rectangle into two right

So, 48 m will be one side of the triangle and the diagonal, which is 50 m, will be the hypotenuse.

According to the Pythagoras theorem:

 $(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2$

Perpendicular =
$$\sqrt{(\text{Hypotenuse})^2 - (\text{Base})^2}$$

Perpendicular =
$$\sqrt{(50)^2 - (48)^2} = \sqrt{2500 - 2304} = \sqrt{196} = 14 \, \text{m}$$

: Other side of the rectangular plot = 14 m

Length = 48m

Breadth = 14m

 \therefore Area of the rectangular plot = 48 m \times 14 m = 672 m² Hence, the area of a rectangular plot is 672 m².

Q3

Answer:

Let the length of the field be 4x m.

Breadth = 3x m

 \therefore Area of the field = $(4x \times 3x)$ m² = $12x^2$ m²

But it is given that the area is 1728 m².

$$12x^2 = 1728$$

$$\Rightarrow \chi^2 = \left(\frac{1728}{12}\right) = 144$$

$$\Rightarrow x = \sqrt{144} = 12$$

 \therefore Length = (4 × 12) m = 48 m

Breadth = (3×12) m = 36 m

 \therefore Perimeter of the field = 2(l + b) units

=
$$2(l + b)$$
 units
= $2(48 + 36)$ m = (2×84) m = 168 m
(168×30) = Rs 5040

∴ Cost of fencing = Rs (168 × 30) = Rs 5040

Area of the rectangular field = 3584 m²

Length of the rectangular field = 64 m

Breadth of the rectangular field = $\left(\frac{\text{Area}}{\text{Length}}\right)$ = $\left(\frac{3584}{64}\right)$ m = 56 m

Perimeter of the rectangular field = 2 (length + breadth)

= 2(64+ 56) m = (2 × 120) m = 240 m

Distance covered by the boy = $5 \times Perimeter$ of the rectangular field

The boy walks at the rate of 6 km/hr.

ОГ

Rate =
$$\left(\frac{6 \times 1000}{60}\right)$$
 m/min = 100 m/min.

 $\therefore \mbox{ Required time to cover a distance of 1200 m} = \left(\frac{1200}{100}\right) \mbox{ min} = 12 \mbox{ min} \\ \mbox{Hence, the boy will take 12 minutes to go five times around the field.}$

Q5

Answer:

Given:

Length of the verandah = 40 m = 400 dm [since 1 m = 10 dm]

Breadth of the verandah = 15 m = 150 dm

 \therefore Area of the verandah= (400 \times 150) dm² = 60000 dm²

Length of a stone = 6 dm

Breadth of a stone = 5 dm

 \therefore Area of a stone = (6 \times 5) dm² = 30 dm²

 $... Total number of stones needed to pave the verandah = \frac{Area}{Area} \quad \frac{of}{coach} \quad \frac{the}{stone} \quad \frac{verandah}{stone}$

$$=\left(\frac{60000}{30}\right)=2000$$

Q6

Answer:

Area of the carpet = Area of the room

$$= (13 \text{ m} \times 9 \text{ m}) = 117 \text{ m}^2$$

Now, width of the carpet = 75 cm (given)

Length of the carpet = $\left(\frac{\text{Area of the carpet}}{\text{Width of the carpet}}\right) = \left(\frac{117}{0.75}\right)$ m = 156 m

Rate of carpeting = Rs 105 per m

: Total cost of carpeting = Rs (156 ×105) = Rs 16380

Hence, the total cost of carpeting the room is Rs 16380.

Q7

Given:

Length of the room = 15 m

Width of the carpet = 75 cm = 0.75 m (since 1 m = 100 cm)

Let the length of the carpet required for carpeting the room be x m.

Cost of the carpet = Rs. 80 per m

 \therefore Cost of x m carpet = Rs. (80 \times x) = Rs. (80x)

Cost of carpeting the room = Rs. 19200

$$\therefore 80x = 19200 \Rightarrow x = \left(\frac{19200}{80}\right) = 240$$

Thus, the length of the carpet required for carpeting the room is 240 m.

Area of the carpet required for carpeting the room = Length of the carpet \times Width of the carpet

$$= (240 \times 0.75) \text{ m}^2 = 180 \text{ m}^2$$

Let the width of the room be b m.

Area to be carpeted = 15 m \times b m = 15b m²

$$15b \text{ m}^2 = 180 \text{ m}^2$$

$$\Rightarrow b = \left(\frac{180}{15}\right) \text{ m} = 12 \text{ m}$$

Hence, the width of the room is 12 m.

Q8

Answer:

Total cost of fencing a rectangular piece = Rs. 9600

Rate of fencing = Rs. 24

$$\therefore \text{ Perimeter of the rectangular field} = \left(\frac{\text{Total cost of fencing}}{\text{Rate of fencing}}\right) \text{ m} = \left(\frac{9600}{24}\right) \text{ m} = 400 \text{ m}$$

Let the length and breadth of the rectangular field be 5x and 3x, respectively

Perimeter of the rectangular land = 2(5x + 3x) = 16x

But the perimeter of the given field is 400 m.

$$16x = 400$$

$$\chi = \left(\frac{400}{16}\right) = 25$$

Length of the field = (5×25) m = 125 m

Breadth of the field = (3×25) m = 75 m

Q9

Answer:

Length of the diagonal of the room = $\sqrt{l^2 + b^2 + h^2}$

=
$$\sqrt{(10)^2 + (10)^2 + (5)^2}$$
 m
= $\sqrt{100 + 100 + 25}$ m
= $\sqrt{225}$ m = 15 m

Hence, length of the largest pole that can be placed in the given hall is 15 m.

010

Answer:

Side of the square = 8.5 m

∴ Area of the square =
$$(\text{Side})^2$$

= $(8.5 \text{ m})^2$
= 72.25 m^2

Q11

Answer:

(i) Diagonal of the square = 72 cm

∴ Area of the square =
$$\left[\frac{1}{2} \times (Diagonal)^2\right]$$
 sq. unit = $\left[\frac{1}{2} \times (72)^2\right]$ cm² = 2592 cm²

(ii)Diagonal of the square = 2.4 m

∴ Area of the square =
$$\left[\frac{1}{2} \times (Diagonal)^2\right]$$
 sq. unit
= $\left[\frac{1}{2} \times (2.4)^2\right]$ m²
= 2.88 m²

We know:

Area of a square =
$$\left\{\frac{1}{2} \times \left(D\mathbf{iagonal}\right)^2\right\}$$
 sq. units Diagonal of the square = $\sqrt{2 \times \mathbf{Area}}$ of \mathbf{square} units = $\left(\sqrt{2 \times 16200}\right)$ m = 180 m

: Length of the diagonal of the square = 180 m

Q13

Answer:

Area of the square = $\left\{ \frac{1}{2} \times (D\,\mathbf{iagonal})^2 \right\}$ sq. units

Area of the square field = $\frac{1}{2}$ hectare

$$=\left(\frac{1}{2}\times 10000\right)$$
 m² = 5000 m²

[since 1 hectare = 10000 m²]

Diagonal of the square = $\sqrt{2 \times Area}$ of the square

$$= (\sqrt{2 \times 5000})$$
m = 100 m

:. Length of the diagonal of the square field = 100 m

/ pr

Q14

Answer:

Area of the square plot = 6084 m² Side of the square plot = $(\sqrt{\text{Area}})$ $(\sqrt{6084})$ m $=(\sqrt{78\times78})$ m = 78 m

 \therefore Perimeter of the square plot = 4 \times side = (4 \times 78) m = 312 m 312 m wire is needed to go along the boundary of the square plot once.

Required length of the wire that can go four times along the boundary = 4 × Perimeter of the square plot

Side of the square = 10 cm

Length of the wire = Perimeter of the square = $4 \times \text{Side} = 4 \times 10 \text{ cm} = 40 \text{ cm}$

Length of the rectangle (/) = 12 cm

Let b be the breadth of the rectangle.

Perimeter of the rectangle = Perimeter of the square

$$\Rightarrow 2(l+b) = 40$$

$$\Rightarrow$$
 2(12 + b) = 40

$$\Rightarrow$$
 24 + 2b = 40

$$\Rightarrow 2b = 40 - 24 = 16$$

$$\Rightarrow$$
 b = $\left(\frac{16}{2}\right)$ cm = 8 cm

:. Breadth of the rectangle = 8 cm

Now, Area of the square = $(Side)^2 = (10 \text{ cm} \times 10 \text{ cm}) = 100 \text{ cm}^2$

Area of the rectangle = $I \times b$ = (12 cm \times 8 cm) = 96 cm²

Hence, the square encloses more area.

It encloses 4 cm² more area.

Q16

Answer:

Given:

Length = 50 m

Breadth = 40 m

Height = 10 m

Area of the four walls = $\{2h(l+b)\}$ sq. unit

$$= \{2 \times 10 \times (50 + 40)\} \text{m}^2$$

$$= \{20 \times 90\} \text{ m}^2 = 1800 \text{ m}^2$$

Area of the ceiling = $I \times b$ = (50 m \times 40 m) = 2000 m²

 \therefore Total area to be white washed = (1800 + 2000) m² \Rightarrow 3800 m²

Rate of white washing = Rs 20/sq. metre

∴ Total cost of white washing = Rs (3800 × 20) = Rs 76000

Q17

Answer:

Let the length of the room be I m

Given

Breadth of the room = 10 m

Height of the room = 4

Area of the four walls = [2(l+b)h] sq units

$$\Rightarrow I = \left(\frac{88}{8}\right) \text{ m} = 11 \text{ m}$$

∴ Length of the room = 11 m

Q18

Answer:

Given:

Length of the room = 7.5 m

Breadth of the room = 3.5 m

Area of the four walls = [2(l+b)h] sq. units.

$$\therefore 77 = [2(7.5 + 3.5)h]$$

$$\Rightarrow 77 = [(2 \times 11)h]$$

$$\Rightarrow h = \left(\frac{77}{22}\right) \text{ m} = \left(\frac{7}{2}\right) \text{ m} = 3.5 \text{ m}$$

: Height of the room = 3.5 m

```
Answer:
```

Let the breadth of the room be x m.

Length of the room = 2x m

Area of the four walls = $\{2(l+b) \times h\}$ sq. units

120 m² =
$$\{2(2x + x) \times 4\}$$
 m²

$$\Rightarrow$$
 120 = {8 \times 3x}

$$\Rightarrow$$
 120 = 24 x

$$\Rightarrow \chi = \left(\frac{120}{24}\right) = 5$$

: Length of the room = $2x = (2 \times 5)$ m = 10 m

Breadth of the room = x = 5 m

:. Area of the floor = $I \times b$ = (10 m \times 5 m) = 50 m²

Q20

Answer:

Length = 8.5 m

Breadth = 6.5 m

Height = 3.4 m

Area of the four walls = $\{2(l + b) \times h\}$ sq. units

=
$$\{2(8.5 + 6.5) \times 3.4\}$$
m² = $\{30 \times 3.4\}$ m² = 102 m²

Area of one door = (1.5×1) m² = 1.5 m²

 \therefore Area of two doors = (2 × 1.5) m² = 3 m²

Area of one window = (2×1) m² = 2 m²

 \therefore Area of two windows = (2 × 2) m² = 4 m²

Total area of two doors and two windows = $(3 + 4) \text{ m}^2$

Area to be painted = $(102 - 7) \text{ m}^2 = 95 \text{ m}^2$

Rate of painting = Rs 160 per m²

Total cost of painting = Rs (95 \times 160) = Rs 15200

Mensuration Exercise 20B

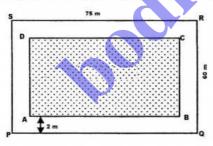
Name	Figure	Perimeter	Area
Rectangle	b a	2 (a + b)	ab
Square	a a a	4a	a²
Triangle	a hi b	a + b + c = 2s	$1 = \frac{1}{2} \times b \times h$ $2 = \sqrt{s(s-a)(s-b)(s-c)}$
Right triangle	h b	b + h + d	$\frac{1}{2}$ bh
Equilateral triangle	a h a	3a	1. $\frac{1}{2}$ ah 2. $\frac{\sqrt{3}}{4}$ a ²
Isosceles right triangle	a	2a + d	$\frac{1}{2}a^2$
Parallelogram	b/h /b	2 (a + b)	ah

	<u>/_h/</u>		
Rhombus	a d_1 d_2 a	4a	$\frac{1}{2} d_1 d_2$
Trapezium	h a	Sum of its four sides	1/2 h (a + b)
Circle	0 r	2πr	πr²
Semicircle	o r	πr + 2r	$\frac{1}{2} \pi^2$
Ring (shaded region)			$\pi (R^2 - r^2)$
Sector of a circle	A C	I + 2r where I = (θ/360) × 2πr	0/360°× πr²

Q1

Answer:

Let PQRS be the given grassy plot and ABCD be the inside boundary of the path.



Length = 75 m

Breadth = 60 m

Area of the plot = (75×60) m² = 4500 m²

Width of the path = 2 m

 \therefore AB = (75 - 2 × 2) m = (75 - 4) m = 71 m

AD = (60 - 2 × 2) m = (60 - 4) m = 56 m

Area of rectangle ABCD = $(71 \times 56) \text{ m}^2 = 3976 \text{ m}^2$

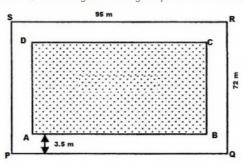
Area of the path = (Area of PQRS - Area of ABCD)

 $= (4500 - 3976) \text{ m}^2 = 524 \text{ m}^2$

Rate of constructing the path = Rs $125 \text{ per } m^2$

:: Total cost of constructing the path = Rs (524 × 125) = Rs 65,500

Let PQRS be the given rectangular plot and ABCD be the inside boundary of the path.



Length = 95 m

Breadth = 72 m

Area of the plot = (95 \times 72) m² = 6,840 m²

Width of the path = 3.5 m

:. AB = (95 - 2 × 3.5) m = (95 - 7) m = 88 m

Area of the path = (Area PQRS - Area ABCD)

Rate of constructing the path = Rs. 80 per m²

∴ Total cost of constructing the path = Rs. (1,120 × 80) = Rs. 89,600

Rate of laying the grass on the plot ABCD = Rs. 40 per m^2

- \div Total cost of laying the grass on the plot = Rs. (5,720 imes 40) = Rs. 2,28,800
- : Total expenses involved = Rs. (89,600 + 2,28,800) = Rs. 3,18,400

Q3

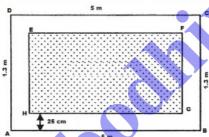
Answer:

Let ABCD be the saree and EFGH be the part of saree without border.

Length, AB= 5 m

Breadth, BC = 1.3 m

Width of the border of the saree = 25 cm = 0.25 m



 \therefore Area of ABCD = 5 m \times 1.3 m = 6.5 m²

Length, GH = {5 -(0.25 + 0.25} m = 4.5 m

Breadth, FG = $\{1.3 - 0.25 + 0.25\}$ m = 0.8 m

 \therefore Area of EFGH = 4.5 m \times .8 m = 3.6 m²

Area of the border = Area of ABCD - Area of EFGH

$$= 6.5 \,\mathrm{m}^2 - 3.6 \,\mathrm{m}^2$$

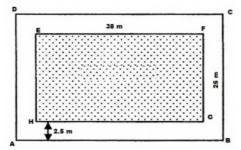
$$= 2.9 \text{ m}^2 = 29000 \text{ cm}^2$$
 [since 1 m² = 10000 cm²]

Rate of printing the border = Rs 1 per 10 cm²

∴ Total cost of printing the border = Rs $\left(\frac{1 \times 29000}{10}\right)$

= Rs 2900

Length, EF = 38 m Breadth, FG = 25 m



 \therefore Area of EFGH = 38 m \times 25 m = 950 m²

Length, AB = (38 + 2.5 + 2.5) m = 43 mBreadth, BC = (25 + 2.5 + 2.5) m = 30 m \therefore Area of ABCD = 43 m \times 30 m = 1290 m²

Area of the path = Area of ABCD - Area of PQRS = 1290 m² - 950 m² $= 340 \text{ m}^2$

Rate of gravelling the path = Rs 120 per m²

: Total cost of gravelling the path = Rs (120 × 340)

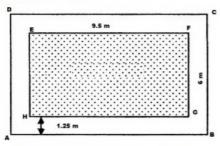
Q5

Answer:

Let EFGH denote the floor of the room.

The white region represents the floor of the 1.25 m verandah.

Length, EF = 9.5 m Breadth, FG = 6 m



 \therefore Area of EFGH = 9.5 m \times 6 m = 57 m²

Length, AB = (9.5 + 1.25 + 1.25) m = 12 mBreadth, BC = (6 + 1.25 + 1.25) m = 8.5 m \therefore Area of ABCD = 12 m \times 8.5 m = 102 m²

Area of the verandah = Area of ABCD - Area of EFGH = $102 \text{ m}^2 - 57 \text{ m}^2$ = 45 m^2

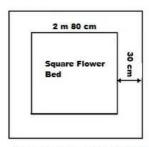
Rate of cementing the verandah = Rs 80 per m²

 \therefore Total cost of cementing the verandah = Rs (80 \times 45) = Rs 3600

Q6

Answer:

Side of the flower bed = 2 m 80 cm = 2.80 m [since 100 cm = 1 m]



 \therefore Area of the square flower bed = (Side)² = (2.80 m)² = 7.84 m² Side of the flower bed with the digging strip = 2.80 m + 30 cm + 30 cm

Area of the enlarged flower bed with the digging strip = $(Side)^2 = (3.4)^2 = 11.56$ m

 \therefore Increase in the area of the flower bed = 11.56 m² – 7.84 m² = 3.72 m²

Q7

Answer:

Let the length and the breadth of the park be 2x m and x m, respectively.

Perimeter of the park = 2(2x + x) = 240 m

$$\Rightarrow 2(2x + x) = 240$$

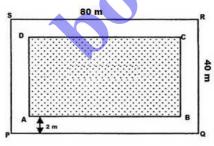
$$\Rightarrow$$
 6x = 240

$$\Rightarrow x = \left(\frac{240}{6}\right) \text{ m} = 40 \text{ m}$$

: Length of the park = $2x = (2 \times 40) = 80 \text{ m}$

Breadth = x = 40 m

Let PQRS be the given park and ABCD be the inside boundary of the path.



Length = 80 m

Breadth = 40 m

Area of the park = $(80 \times 40) \text{ m}^2 = 3200 \text{ m}^2$

Width of the path = 2 m

 \therefore AB = (80 - 2 × 2) m = (80 - 4) m = 76 m

$$AD = (40 - 2 \times 2) \text{ m} = (40 - 4) \text{ m} = 36 \text{ m}$$

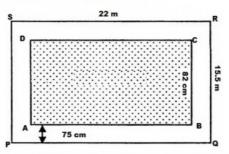
Area of the rectangle ABCD = $(76 \times 36) \text{ m}^2 = 2736 \text{ m}^2$

Area of the path = (Area of PQRS - Area of ABCD)

Rate of paving the path = Rs. 80 per m²

 \therefore Total cost of paving the path = Rs. (464 \times 80) = Rs. 37,120

Length of the hall, PQ = 22 m Breadth of the hall, QR = 15.5 m



:. Area of the school hall PQRS = 22 m \times 15.5 m = 341 m² Length of the carpet, AB = 22 m - (0.75 m + 0.75 m) = 20.5 m [s

[since 100 cm = 1 m]

Breadth of the carpet, BC = 15.5 m - (0.75 m + 0.75 m) = 14 m

 \therefore Area of the carpet ABCD = 20.5 m \times 14 m = 287 m² Area of the strip = Area of the school hall (PQRS) – Area of the carpet (ABCD)

$$= 341 \text{ m}^2 - 287 \text{ m}^2$$

= 54 m²

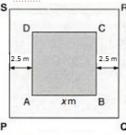
Area of 1 m length of the carpet = 1 m \times 0.82 m = 0.82 m²

 \therefore Length of the carpet whose area is 287 m² = 287 m² \div 0.82 m² = 350 m Cost of the 350 m long carpet = Rs 60 \times 350 = Rs 21000

Q9

Answer:

Let ABCD be the square lawn and PQRS be the outer boundary of the square path.



Let a side of the lawn (AB) be x m.

Area of the square lawn = x^2

Length, PQ = (x m + 2.5 m + 2.5 m) = (x + 5) m

:. Area of PQRS = $(x + 5)^2 = (x^2 + 10x + 25) \text{ m}^2$

Area of the path = Area of PQRS - Area of the square lawn (ABCD)

$$\Rightarrow$$
 165 = x^2 + 10 x + 25 - x^2

$$\Rightarrow 165 = 10x + 25$$

$$\Rightarrow$$
 165 - 25 = 10x

$$x = 140 \div 10 = 14$$

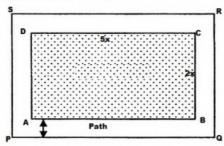
: Side of the lawn = 14 m

 \therefore Area of the lawn = (Side)² = (14 m)² = 196 m²

Q10

Answer:

Area of the path = 305 m²



Let the length of the park be 5x m and the breadth of the park be 2x m.

: Area of the rectangular park = $5x \times 2x = 10x^2 \text{ m}^2$

Width of the path = 2.5 m

Outer length, PQ = 5x m + 2.5 m + 2.5 m = (5x + 5) m

Outer breadth, QR = 2x + 2.5 m + 2.5 m = (2x + 5) m

Area of PQRS = $(5x + 5) \times (2x + 5) = (10x^2 + 25x + 10x + 25) = (10x^2 + 35x + 25) \text{ m}^2$

: Area of the path = $[(10x^2 + 35x + 25) - 10x^2]$ m²

 \Rightarrow 305 = 35x + 25

 $\Rightarrow 305 - 25 = 35x$

 \Rightarrow 280 = 35 χ

 \Rightarrow x = 280 \div 35 = 8

 \therefore Length of the park = $5x = 5 \times 8 = 40 \text{ m}$

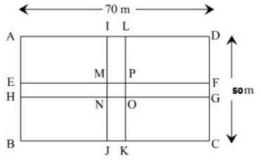
Breadth of the park = $2x = 2 \times 8 = 16 \text{ m}$

Q11

Answer:

Let ABCD be the rectangular park.

Let EFGH and IJKL be the two rectangular roads with width 5 m.



Length of the rectangular park, AD = 70 m

Breadth of the rectangular park, CD = 50 m

∴ Area of the rectangular park = Length × Breadth = 70 m × 50 m = 3500 m²

Area of road EFGH = 70 m \times 5 m = 350 m²

Area of road $IJKL = 50 \text{ m} \times 5 \text{ m} = 250 \text{ m}^2$

Clearly, area of MNOP is common to both the two roads

 \therefore Area of MNOP = 5 m \times 5 m = 25 m²

Area of the roads = Area (EFGH) + Area (IJKL) - Area (MNOP)

 $= (350 + 250) \text{ m}^2 - 25 \text{ m}^2 = 575 \text{ m}^2$

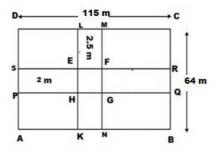
It is given that the cost of constructing the roads is Rs. 120/m².

Cost of constructing 575 m² area of the roads = Rs. (120×575) = Rs. 69000

Q12

Answer:

Let ABCD be the rectangular field and PQRS and KLMN be the two rectangular roads with width 2 m and 2.5 m, respectively.



Length of the rectangular field, CD = 115 cm

Breadth of the rectangular field, BC = 64 m

 \therefore Area of the rectangular lawn ABCD = 115 m \times 64 m = 7360 m²

Area of the road PQRS = 115 m \times 2 m = 230 m²

Area of the road KLMN = 64 m \times 2.5 m = 160 m²

Clearly, the area of EFGH is common to both the two roads.

- \therefore Area of EFGH = 2 m \times 2.5 m = 5 m²
- \therefore Area of the roads = Area (KLMN) + Area (PQRS) Area (EFGH) = (230 m² + 160 m²) - 5 m² = 385 m²

Rate of gravelling the roads = Rs 60 per m²

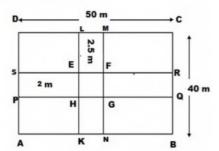
:: Total cost of gravelling the roads = Rs (385 × 60)

= Rs 23,100

Q13

Answer:

Let ABCD be the rectangular field and KLMN and PQRS be the two rectangular roads with width $2.5\,$ m and $2\,$ m, respectively.



Length of the rectangular field CD = 50 cm

Breadth of the rectangular field BC = 40 m

 \therefore Area of the rectangular field ABCD = 50 m \times 40 m = 2000 m²

Area of road KLMN = $40 \text{ m} \times 2.5 \text{ m} = 100 \text{ m}^2$

Area of road PQRS = $50 \text{ m} \times 2 \text{ m} = 100 \text{ m}^2$

Clearly, area of EFGH is common to both the two roads.

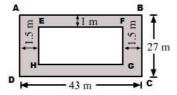
- \therefore Area of EFGH = 2.5 m \times 2 m = 5 m²
- :. Area of the roads = Area (KLMN) + Area (PQRS) Area (EFGH) = $(100 \text{ m}^2 + 100 \text{ m}^2) - 5 \text{ m}^2 = 195 \text{ m}^2$

Area of the remaining portion of the field = Area of the rectangular field (ABCD) - Area of the roads

Q14

Answer:

(i) Complete the rectangle as shown below:



Area of the shaded region = [Area of rectangle ABCD - Area of rectangle EFGH] sq. units

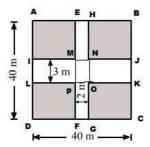
= [(43 m
$$\times$$
 27 m) - {(43 - 2 \times 1.5) m x (27 - 1 \times 2) m}]

=
$$[(43 \text{ m} \times 27 \text{ m}) - \{40 \text{ m} \times 25 \text{ m}\}]$$

= 1161 m² - 1000 m²

 $= 161 \text{ m}^2$

(ii) Complete the rectangle as shown below:



Area of the shaded region = [Area of square ABCD - $\{(Area of EFGH) + (Area of IJKL) - (Area of MNOP)\}\}$ sq. units

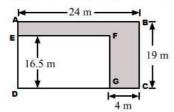
=
$$[(40 \times 40) - \{(40 \times 2) + (40 \times 3) - (2 \times 3)\}] \text{ m}^2$$

= $[1600 - \{(80 + 120 - 6)] \text{ m}^2$
= $[1600 - 194] \text{ m}^2$
= 1406 m^2

Q15

Answer:

(i) Complete the rectangle as shown below:

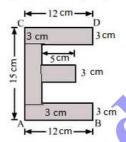


Area of the shaded region = [Area of rectangle ABCD - Area of rectangle EFGD] sq. units

= [(AB × BC) - (DG × GF)]
$$m^2$$

= [(24 m × 19 m) - {(24 - 4) m × 16.5 m}]
= [(24 m × 19 m) - (20 m × 16.5) m]
= (456 - 330) m^2 = 126 m^2

(ii) Complete the rectangle by drawing lines as shown below;

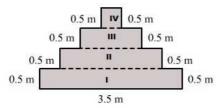


Area of the shaded region = $\{(12 \times 3) + (12 \times 3) + (5 \times 3) + \{(15 - 3 - 3) \times 3)\}$ cm²

$$= {36 + 36 + 15 + 27} \text{ cm}^2$$

Q16

Divide the given figure in four parts shown below:



Given:

Width of each part = 0.5 m

Now, we have to find the length of each part.

Length of part I = 3.5 m

Length of part II = (3.5 - 0.5 - 0.5) m = 2.5 m

Length of part III = (2.5 - 0.5 - 0.5) = 1.5 m

Length of part IV = (1.5 - 0.5 - 0.5) = 0.5 m

 \therefore Area of the shaded region = [Area of part (I) + Area of part (II) + Area of part (III) + Area of part (IV)] sq. units

=
$$[(3.5 \times 0.5) + (2.5 \times 0.5) + (1.5 \times 0.5) + (0.5 \times 0.5)] \text{ m}^2$$

= $[1.75 + 1.25 + 0.75 + 0.25] \text{ m}^2$
= 4 m^2

Mensuration Exercise 20C

Name	Figure	Perimeter	Area
Rectangle	b a	2 (a + b)	ab
Square	a a a	4a	a²
Triangle	a hi c	a + b + c = 2s	$1 = \frac{1}{2} \times b \times h$ $2 = \sqrt{s(s-a)(s-b)(s-c)}$
Right triangle	h	b + h + d	1 bh
Equilateral triangle	a h a	3a	1. $\frac{1}{2}$ ah 2. $\frac{\sqrt{3}}{4}$ a ²
Isosceles right triangle	a	2a + d	$\frac{1}{2}$ a ²
Parallelogram	a b/h/b	2 (a + b)	ah

	<u> </u>		
Rhombus	a d_1 d_2 a	4a	$\frac{1}{2} d_1 d_2$
Trapezium	h a	Sum of its four sides	1/2 h (a + b)
Circle	O r	2πr	πr²
Semicircle	o r	πr + 2r	$\frac{1}{2} \pi^2$
Ring (shaded region)			$\pi (R^2 - r^2)$
Sector of a circle	A C	I + 2r where I = (θ/360) × 2πr	θ/360°× πr²

Q1

Answer:

Base = 32 cm Height = 16.5 cm

∴ Area of the parallelogram = Base × Height = 32 cm × 16.5 cm = 528 cm²

$$\therefore$$
 Area of the parallelogram = Base \times Height = 1.6 m \times 0.75 m = 1.2 m^2

О3

Answer:

(i) Base = 14 dm = (14
$$\times$$
 10) cm = 140 cm [since 1 dm = 10 cm]
Height = 6.5 dm = (6.5 \times 10) cm = 65 cm

Area of the parallelogram = Base
$$\times$$
 Height = 140 cm \times 65 cm = 9100 cm²

(ii) Base = 14 dm = (14
$$\times$$
 10) cm
= 140 cm = 1.4 m
Height = 6.5 dm = (6.5 \times 10) cm
= 65 cm = 0.65 m

$$\therefore$$
 Area of the parallelogram = Base \times Height = 1.4 m \times 0.65 m = 0.91 m²

Q4

Answer:

Area of the given parallelogram = 54 cm^2 Base of the given parallelogram = 15 cm \therefore Height of the given parallelogram = $\frac{\text{Area}}{\text{Base}} = \left(\frac{54}{15}\right) \text{ cm} = 3$

Q5

Answer:

Base of the parallelogram = 18 cm Area of the parallelogram = 153 cm

∴ Area of the parallelogram = Base × Height

$$\Rightarrow \text{Height} = \frac{\text{Area of the parallelogram}}{\text{Base}} = \left(\frac{153}{18}\right) \text{ cm} = 8.5 \text{ cm}$$

Hence, the distance of the given side from its opposite side is 8.5 cm.

Q6

Answer:

Base, AB = 18 cm Height, AL = 6.4 cm

 \therefore Area of the parallelogram ABCD = Base \times Height

=
$$(18 \text{ cm} \times 6.4 \text{ cm}) = 115.2 \text{ cm}^2$$
 ... (i)

Now, taking BC as the base:

Area of the parallelogram ABCD = Base \times Height

From equation (i) and (ii):

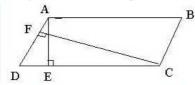
 $12 \text{ cm} \times \text{AM} = 115.2 \text{ cm}^2$

$$\Rightarrow$$
 AM = $\left(\frac{115.2}{12}\right)$ cm

= 9.6 cm

Q7

ABCD is a parallelogram with side AB of length 15 cm and the corresponding altitude AE of length 4 cm. The adjacent side AD is of length 8 cm and the corresponding altitude is CF.



Area of a parallelogram = Base × Height

We have two altitudes and two corresponding bases.

$$\therefore AD \times CF = AB \times AE$$

$$\Rightarrow 8 \text{ cm} \times CF = 15 \text{ cm} \times 4 \text{ cm}$$

$$\Rightarrow$$
 CF = $\left(\frac{15\times4}{8}\right)$ cm = $\left(\frac{15}{2}\right)$ cm = 7.5 cm

Hence, the distance between the shorter sides is 7.5 cm.

Q8

Answer:

Let the base of the parallelogram be x cm.

Then, the height of the parallelogram will be $\frac{1}{3}x$ cm.

It is given that the area of the parallelogram is 108 cm²

Area of a parallelogram = Base × Height

$$108 \text{ cm}^2 = x \times \frac{1}{3}x$$

$$108 \text{ cm}^2 = \frac{1}{3}x^2$$

$$\Rightarrow x^2 = (108 \times 3) \text{ cm}^2 = 324 \text{ cm}^2$$

$$\Rightarrow x^2 = (18 \text{ cm})^2$$

$$\Rightarrow x = 18 \text{ cm}$$

Height =
$$\frac{1}{3}x = \left(\frac{1}{3} \times 18\right)$$
 cm
= 6 cm

Q9

Answer:

Let the height of the parallelogram be x cm.

Then, the base of the parallelogram will be 2x cm.

It is given that the area of the parallelogram is 512 cm².

Area of a parallelogram = Base × Height

$$\therefore 512 \text{ cm}^2 = 2x \times x$$

$$512 \text{ cm}^2 = 2x^2$$

$$\Rightarrow x^2 = \left(\frac{512}{2}\right) \text{ cm}^2 = 256 \text{ cm}^2$$

$$\Rightarrow x^2 = (16 \text{ cm})^2$$

$$\Rightarrow x = 16 \text{ cm}$$

$$\therefore$$
 Base = 2x = 2 \times 16

Height = x = 16 cm

Q10

Answer:

A rhombus is a special type of a parallelogram.

The area of a parallelogram is given by the product of its base and height.

- \therefore Area of the given rhombus = Base \times Height
- (i) Area of the rhombus = 12 cm \times 7.5 cm = 90 cm²
- (ii) Base = $2 \text{ dm} = (2 \times 10) = 20 \text{ cm}$ [since 1 dm = 10 cm]

Height = 12.6 cm

:: Area of the rhombus = 20 cm × 12.6 cm = 252 cm²

Q11

Answer:

(i)

Length of one diagonal = 16 cm

Length of the other diagonal = 28 cm

 \therefore Area of the rhombus = $\frac{1}{2}$ × (Product of the diagonals)

$$=$$
 $\left(\frac{1}{2} \times 16 \times 28\right)$ cm² = 224 cm²

(ii)

Length of one diagonal = 8 dm 5 cm = $(8 \times 10 + 5)$ cm = 85 cm

Length of the other diagonal = 5 dm 6 cm = $(5 \times 10 + 6)$ cm = 56 cm

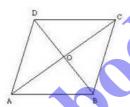
 \therefore Area of the rhombus = $\frac{1}{2}$ × (Product of the diagonals)

$$=$$
 $\left(\frac{1}{2} \times 85 \times 56\right) \text{ cm}^2$
= 2380 cm²

Q12

Answer:

Let ABCD be the rhombus, whose diagonals intersect at O.



AB = 20 cm and AC 24 cm

The diagonals of a rhombus bisect each other at right angles.

Therefore, $\triangle AOB$ is a right angled triangle, right angled at O.

Here, OA =
$$\frac{1}{2}$$
 \mathbf{AC} = 12 cm
AB = 20 cm

By Pythagoras theorem:

$$(AB)^2 = (OA)^2 + (OB)^2$$

$$\Rightarrow (20)^2 = (12)^2 + (OB)^2$$

$$\Rightarrow$$
 (OB)² = (20)² - (12)²

$$\Rightarrow$$
 (OB)² = 400 - 144 = 256

$$\Rightarrow (OB)^2 = (16)^2$$

$$\therefore$$
 BD = 2 \times OB = 2 \times 16 cm = 32 cm

:. Area of the rhombus ABCD =
$$\left(\frac{1}{2} \times AC \times BD\right)$$
 cm² = $\left(\frac{1}{2} \times 24 \times 32\right)$ cm² = 384 cm²

Area of a rhombus = $\frac{1}{2}$ × (Product of the diagonals)

Length of one diagonal = 19.2 cm

Area of the rhombus = 148.8 cm²

∴ Length of the other diagonal = $\left(\frac{148.8 \times 2}{19.2}\right)$ cm = 15.5 cm

Q14

Answer:

Perimeter of the rhombus = 56 cm

Area of the rhombus = 119 cm²

Side of the rhombus = $\frac{\text{Perimeter}}{4} = \left(\frac{56}{4}\right) \text{ cm} = 14 \text{ cm}$

Area of a rhombus = Base × Height

∴ Height of the rhombus = $\frac{\text{Area}}{\text{Base}} = \left(\frac{119}{14}\right) \text{ cm}$

Q15

Answer:

Given:

Height of the rhombus = 17.5 cm Area of the rhombus = 441 cm²

We know:

Area of a rhombus = Base × Height

∴ Base of the rhombus = $\frac{\text{Area}}{\text{Height}} = \left(\frac{441}{17.5}\right)$ Hence, each side of a rhombus is

Q16

Answer:

Area of a triangle =

$$=$$
 $\left(\frac{1}{2} \times 24.8 \times 16.5\right)$ cm² = 204.6 cm²

Given:

Area of the rhombus = Area of the triangle

Area of the rhombus = 204.6 cm²

Area of the rhombus = $\frac{1}{2}$ × (Product of the diagonals)

Length of one diagonal = 22 cm

:. Length of the other diagonal =
$$\left(\frac{204.6 \times 2}{22}\right)$$
 cm
= 18.6 cm

Mensuration Exercise 20D

Name	Figure	Perimeter	Area
Rectangle	b a	2 (a + b)	ab
Square	a a a	4a	a²
Triangle	a hi c	a + b + c = 2s	$1 = \frac{1}{2} \times b \times h$ $2 = \sqrt{s(s-a)(s-b)(s-c)}$
Right triangle	h	b+h+d	1 bh
Equilateral triangle	a h a	3a	1. $\frac{1}{2}$ ah 2. $\frac{\sqrt{3}}{4}$ a ²
Isosceles right triangle	d	2a + d	$\frac{1}{2}a^2$
Parallelogram	b) h /b	2 (a + b)	ah

	<u>/_h/</u>		
Rhombus	a d_1 d_2 a	4a	$\frac{1}{2} d_1 d_2$
Trapezium	h a	Sum of its four sides	1/2 h (a + b)
Circle	O r	2πr	πr²
Semicircle	o r	πr + 2r	$\frac{1}{2} \pi^2$
Ring (shaded region)			$\pi (R^2 - r^2)$
Sector of a circle	A C	I + 2r where I = (θ/360) × 2πr	θ/360°× πr²

Q1

Answer:

We know:

Area of a triangle = $\frac{1}{2} \times Base \times Height$

- (i) Base = 42 cm Height = 25 cm
 - \therefore Area of the friangle = $\left(\frac{1}{2}\times42\times25\right)$ cm² = 525 cm²
- (ii) Base = 16.8 m

Height = 75 cm $\sqrt{0.75}$ m [since 100 cm = 1 m]

- ∴ Area of the triangle = $\left(\frac{1}{2} \times 16.8 \times 0.75\right)$ m² = 6.3 m²
- (iii) Base = 8 dm = (8 \times 10) cm = 80 cm [since 1 dm = 10 cm] Height = 35 cm
 - :. Area of the triangle = $\left(\frac{1}{2} \times 80 \times 35\right)$ cm² = 1400 cm²

Q2

Answer:

Height of a triangle = 2×AreaBase Here, base = 16 cm and area = 72 cm²

: Height = 2×7216 cm = 9 cm

Q3

Answer:

Height of a triangle = $\frac{2 \times Area}{Base}$ Here, base = 28 m and area = 224 m²

$$\therefore \text{ Height} = \left(\frac{2 \times 224}{28}\right) \text{ m} = 16 \text{ m}$$

Q4

Answer:

Base of a triangle = $\frac{2 \times Area}{Hoight}$ Here, height = 12 cm and area = 90 cm²

$$\therefore \text{ Base} = \left(\frac{2 \times 90}{12}\right) \text{ cm} = 15 \text{ cm}$$

Q5

Answer:

Total cost of cultivating the field = Rs. 14580

Rate of cultivating the field = Rs. 1080 per hectare

Area of the field = (Total cost) hectare

Area of the field =
$$\left(\frac{\text{Total cost}}{\text{Rate per hectare}}\right)$$
 hectare
= $\left(\frac{14580}{1080}\right)$ hectare
= 13.5 hectare
= (13.5 × 10000) m² = 135000 m² [since 1 hectare = 10000 m²]

Let the height of the field be x m

Then, its base will be 3x m.

Area of the field = $\left(\frac{1}{2} \times 3x \times x\right)$ m² = $\left(\frac{3x^2}{2}\right)$ m²

$$\therefore \left(\frac{3x^2}{2}\right) = 135000$$

$$\Rightarrow x^2 = \left(135000 \times \frac{2}{3}\right) = 90000$$

$$\Rightarrow x = \sqrt{90000} = 300$$

: Base = $(3 \times 300) = 900 \text{ m}$ Height = 300 m

ricigiii – o

Q6

Answer:

Let the length of the other leg be h cm.

Then, area of the triangle = $\left(\frac{1}{2} \times 14.8 \times h\right)$ cm² = (7.4 h) cm²

But it is given that the area of the triangle is 129.5 cm².

$$\therefore 7.4h = 129.5$$

$$\Rightarrow h = \left(\frac{129.5}{7.4}\right) = 17.5 \text{ cm}$$

∴ Length of the other leg = 17.5 cm

Here, base = 1.2 m and hypotenuse = 3.7 m

In the right angled triangle:

$$\begin{split} \text{Perpendicular} &= \sqrt{\left(H\,\text{ypotenuse}\right)^2 - \left(B\,\text{ase}\right)^2} \\ &= \sqrt{\left(3.7\right)^2 - \left(1.2\right)^2} \\ &= \sqrt{13.69 - 1.44} \\ &= \sqrt{12.25} \\ &= 3.5 \\ \text{Area} &= \left(\frac{1}{2}\times\text{base}\times\text{perpendicular}\right) \text{sq. units} \\ &= \left(\frac{1}{2}\times1.2\times3.5\right) \text{m}^2 \end{split}$$

∴ Area of the right angled triangle = 2.1 m²

Q8

Answer:

In a right angled triangle, if one leg is the base, then the other leg is the height. Let the given legs be 3x and 4x, respectively.

Area of the triangle =
$$\left(\frac{1}{2} \times 3x \times 4x\right)$$
 cm²

$$\Rightarrow 1014 = (6x^2)$$

$$\Rightarrow$$
 1014 = 6 x^2

$$\Rightarrow x^2 = \left(\frac{1014}{6}\right) = 169$$

$$\Rightarrow x = \sqrt{169} = 13$$

: Base =
$$(3 \times 13) = 39 \text{ cm}$$

Height =
$$(4 \times 13) = 52$$
 cm

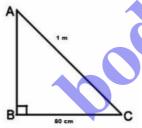
Q9

Answer:

Consider a right-angled triangular scarf (ABC).

Here, ∠B= 90°

BC = 80 cm



Now,
$$AB^2 + BC^2 = AC^2$$

$$\Rightarrow AB^2 = AC^2 - BC^2 = (100)^2 - (80)^2$$

$$\Rightarrow$$
 AB = $\sqrt{3600}$ = 60 cm

Area of the scarf ABC = $\left(\frac{1}{2} \times BC \times AB\right)$ sq. units

$$= \left(\frac{1}{2} \times 80 \times 60\right) \text{ cm}^2$$

=
$$2400 \text{ cm}^2 = 0.24 \text{ m}^2$$
 [since 1 m² = 10000 cm^2]

Rate of the cloth = Rs 250 per m²

 \therefore Total cost of the scarf = Rs (250 \times 0.24) = Rs 60

Hence, cost of the right angled scarf is Rs 60.

Q10

(i) Side of the equilateral triangle = 18 cm

Area of the equilateral triangle =
$$\frac{\sqrt{3}}{4}$$
 (Side)² sq. units = $\frac{\sqrt{3}}{4}$ (18)² cm² = ($\sqrt{3} \times 81$) cm² = (1.73 × 81) cm² = 140.13 cm²

(ii) Side of the equilateral triangle = 20 cm

Area of the equilateral triangle =
$$\frac{\sqrt{3}}{4}$$
 (Side)² sq. units
= $\frac{\sqrt{3}}{4}$ (20)² cm² = ($\sqrt{3} \times 100$) cm²
= (1.73 × 100) cm² = 173 cm²

Q11

It is given that the area of an equilateral triangle is 16 3 cm².

We know:

Area of an equilateral triangle = $\frac{\sqrt{3}}{4}$ (side)² sq. units

$$\therefore \text{ Side of the equilateral triangle} = \left[\sqrt{\left(\frac{4 \times \text{Area}}{\sqrt{3}} \right)} \right] \text{ cm} \\ = \left[\sqrt{\left(\frac{4 \times 16 \sqrt{3}}{\sqrt{3}} \right)} \right] \text{ cm} = \left(\sqrt{4 \times 16} \right) \text{ cm} = \left(\sqrt{64} \right) \text{ cm} = 8 \text{ cm}$$

com

Hence, the length of the equilateral triangle is 8 cm.

Q12

Answer:

Let the height of the triangle be h cm.

Area of the triangle =
$$\left(\frac{1}{2} \times \mathbf{Base} \times \mathbf{Height}\right)$$
 sq. units = $\left(\frac{1}{2} \times 24 \times h\right)$ cm²

Let the side of the equilateral triangle be a cm.

Area of the equilateral triangle be a cm.
$$= \left(\frac{\sqrt{3}}{4} a^2\right) \text{ sq. units}$$

$$= \left(\frac{\sqrt{3}}{4} \times 24 \times 24\right) \text{ cm}^2 = \left(\sqrt{3} \times 144\right) \text{ cm}^2$$

$$\therefore \left(\frac{1}{2} \times 24 \times h\right) = \left(\sqrt{3} \times 144\right)$$

$$\Rightarrow 12 \ h = \left(\sqrt{3} \times 144\right)$$

$$\Rightarrow h = \left(\frac{\sqrt{3} \times 144}{12}\right) = \left(\sqrt{3} \times 12\right) = (1.73 \times 12) = 20.76 \text{ cm}$$

(i) Let
$$a=13$$
 m, $b=14$ m and $c=15$ m
$$s = \left(\frac{a+b+c}{2}\right) = \left(\frac{13+14+15}{2}\right) = \left(\frac{42}{2}\right) \text{m} = 21 \text{ m}$$
 \therefore Area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ sq. units
$$= \sqrt{21(21-13)(21-14)(21-15)} \text{m}^2$$

$$= \sqrt{21\times8\times7\times6} \text{ m}^2$$

$$= \sqrt{3\times7\times2\times2\times2\times7\times2\times3} \text{ m}^2$$

$$= (2\times2\times3\times7) \text{ m}^2$$

$$= 84 \text{ m}^2$$

(iii) Let
$$a = 91$$
 m, $b = 98$ m and $c = 105$ m
$$s = \left(\frac{a+b+c}{2}\right) = \left(\frac{91+98+105}{2}\right) = \left(\frac{294}{2}\right) \text{ m} = 147 \text{ m}$$
 \therefore Area of the triangle $= \sqrt{s(s-a)(s-b)(s-c)}$ sq. units
$$= \sqrt{147(147-91)(147-98)(147-105)} \text{m}^2$$

$$= \sqrt{147 \times 56 \times 49 \times 42} \text{ m}^2$$

$$= \sqrt{3 \times 49 \times 8 \times 7 \times 49 \times 6 \times 7} \text{ m}^2$$

$$= \sqrt{3 \times 7 \times 7 \times 2 \times 2 \times 2 \times 7 \times 7 \times 7 \times 2 \times 3 \times 7} \text{ m}^2$$

$$= (2 \times 2 \times 3 \times 7 \times 7 \times 7) \text{ m}^2$$

$$= 4116 \text{ m}^2$$

Q14

Answer:

Let
$$a = 33$$
 cm, $b = 44$ cm and $c = 55$ cm.

Then, $s = \frac{a+b+c}{2} = \left(\frac{33+44+55}{2}\right)$ cm = $\left(\frac{132}{2}\right)$ cm = 66 cm

 \therefore Area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ sq. units = $\sqrt{66(66-33)(66-44)(66-55)}$ cm² = $\sqrt{66 \times 33 \times 22 \times 11}$ cm² = $\sqrt{6 \times 11 \times 3 \times 11 \times 2 \times 11 \times 11}$ cm² = $\sqrt{6 \times$

Let the height on the side measuring 44 cm be h cm.

Then, Area =
$$\frac{1}{2} \times b \times h$$

 \Rightarrow 726 cm² = $\frac{1}{2} \times 44 \times h$
 \Rightarrow $h = \left(\frac{2 \times 726}{44}\right)$ cm = 33 cm.

 \therefore Area of the triangle = 726 cm²

Height corresponding to the side measuring 44 cm = 33 cm

Let a=13x cm, b=14x cm and c=15x cm Perimeter of the triangle = 13x+14x+15x=84 (given) $\Rightarrow 42x=84$ $\Rightarrow x=\frac{84}{42}=2$ $\therefore a=26$ cm, b=28 cm and c=30 cm

$$\begin{split} s &= \frac{a + b + c}{2} = \left(\frac{26 + 28 + 30}{2}\right) \text{cm} = \left(\frac{84}{2}\right) \text{cm} = 42 \text{ cm} \\ &\therefore \text{ Area of the triangle} = \sqrt{s(s - a)(s - b)(s - c)} \text{ sq. units} \\ &= \sqrt{42(42 - 26)(42 - 28)(42 - 30)} \text{ cm}^2 \\ &= \sqrt{42 \times 16 \times 14 \times 12} \text{ cm}^2 \\ &= \sqrt{6 \times 7 \times 4 \times 4 \times 2 \times 7 \times 6 \times 2} \text{ cm}^2 \\ &= (2 \times 4 \times 6 \times 7) \text{ cm}^2 = 336 \text{ cm}^2 \end{split}$$

Hence, area of the given triangle is 336 cm².

Q16

Answer:

Let a = 42 cm, b = 34 cm and c = 20 cm

Then, $s = \frac{a+b+c}{2} = \left(\frac{42+34+20}{2}\right)$ cm = $\left(\frac{96}{2}\right)$ cm = 48 cm \therefore Area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ sq. units = $\sqrt{48(48-42)(48-34)(48-20)}$ cm² = $\sqrt{48\times6\times14\times28}$ cm² = $\sqrt{6\times2\times2\times2\times6\times14\times2\times14}$ cm² = $(2\times2\times6\times14)$ cm² = 336 cm²

Let the height on the side measuring 42 cm be h cm.

Then, Area =
$$\frac{1}{2} \times \mathbf{b} \times \mathbf{h}$$

 $\Rightarrow 336 \text{ cm}^2 = \frac{1}{2} \times 42 \times \mathbf{h}$
 $\Rightarrow h = \left(\frac{2 \times 336}{42}\right) \text{ cm} = 16 \text{ cm}$
 \therefore Area of the triangle = 336 cm²

Height corresponding to the side measuring 42 cm = 16 cm

Q17

Answer:

Let each of the equal sides be a cm.

b = 48 cm

a = 30 cm

Area of the triangle = $\left\{\frac{1}{2} \times b \times \sqrt{a^2 - \frac{b^2}{4}}\right\}$ sq. units $\left\{\frac{1}{2} \times 48 \times \sqrt{\left(30\right)^2 - \frac{\left(48\right)^2}{4}}\right\} \text{ cm}^2 = \left(24 \times \sqrt{900 - \frac{2304}{4}}\right) \text{ cm}^2$ $= \left(24 \times \sqrt{900 - 576}\right) \text{ cm}^2 = \left(24 \times \sqrt{324}\right) \text{ cm}^2 = \left(24 \times 18\right) \text{ cm}^2 = 432 \text{ cm}^2$

∴ Area of the triangle = 432 cm²

Q18

Answer:

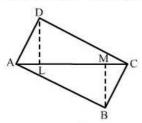
Let each of the equal sides be a cm.

$$a + a + 12 = 32 \Rightarrow 2a = 20 \Rightarrow a = 10$$

Area of the triangle = $\begin{cases} \frac{1}{2} \times b \times \sqrt{a^2 - \frac{b^3}{4}} \end{cases} \text{ sq. units}$ = $\begin{cases} \frac{1}{2} \times 12 \times \sqrt{100 - \frac{144}{4}} \end{cases} \text{ cm}^2 = \left(6 - \sqrt{100 - 36}\right) \text{ cm}^2$ = $\left(6 \times \sqrt{64}\right) \text{ cm}^2 = (6 \times 8) \text{ cm}^2$ = 48 cm^2

We have:

AC = 26 cm, DL = 12.8 cm and BM = 11.2 cm



Area of $\triangle ADC = \frac{1}{2} \times AC \times DL$ $= \frac{1}{2} \times 26 \text{ cm} \times 12.8 \text{ cm} = 166.4 \text{ cm}^2$ Area of $\triangle ABC = \frac{1}{2} \times AC \times BM$ $= \frac{1}{2} \times 26 \text{ cm} \times 11.2 \text{ cm} = 145.6 \text{ cm}^2$

:. Area of the quadrilateral ABCD = Area of $\triangle ADC$ + Area of $\triangle ABC$ = (166.4 + 145.6) cm² = 312 cm²

Q20

Answer:

First, we have to find the area of ΔABC and ΔACD.

For AACD:

Let a = 30 cm, b = 40 cm and c = 50 cm $s = \left(\frac{a+b+c}{2}\right) = \left(\frac{30+40+50}{2}\right) = \left(\frac{120}{2}\right) = 60 \text{ cm}$ $\therefore \text{ Area of triangle ACD} = \sqrt{s(s-a)(s-b)(s-c)} \text{ sq. units}$ $= \sqrt{60(60-30)(60-40)(60-50)} \text{ cm}^2$ $= \sqrt{60 \times 30 \times 20 \times 10} \text{ cm}^2$ $= \sqrt{360000} \text{ cm}^2$ $= 600 \text{ cm}^2$

For AABC:

Let a = 26 cm, b = 28 cm and c = 30 cm $s = \left(\frac{a+b+c}{2}\right) = \left(\frac{26+28+30}{2}\right) = \left(\frac{84}{2}\right) = 42$ cm $\therefore \text{ Area of triangle ABC} = \sqrt{s(s-a)(s-b(s-c))} \text{ sq. units} \\ = \sqrt{42(42-26)(42-28)(42-30)} \text{ cm}^2 \\ = \sqrt{42\times16\times14\times12} \text{ cm}^2 \\ = \sqrt{2\times3\times7\times2\times2\times2\times2\times7\times3\times2\times2} \text{ cm}^2 \\ = (2\times2\times2\times2\times2\times3\times7) \text{ cm}^2 \\ = 336 \text{ cm}^2$

.: Area of the given quadrilateral ABCD = Area of ΔACD + Area of ΔABC = (600 + 336) cm² = 936 cm²

Q21

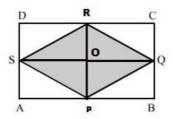
Answer:

Area of the rectangle = AB \times BC = 36 m \times 24 m = 864 m²

Area of the triangle = $\frac{1}{2}$ \times AD \times FE = $\frac{1}{2}$ \times BC \times FE [since AD = BC] = $\frac{1}{2}$ \times 24 m \times 15 m = 12 m \times 15 m = 180 m² \therefore Area of the shaded region = Area of the rectangle – Area of the triangle = (864 – 180) m² = 684 m²

Join points PR and SQ.

These two lines bisect each other at point O.



Here, AB = DC = SQ = 40 cm AD = BC = RP = 25 cm

Also,
$$OP = OR = \frac{RP}{2} = \frac{25}{2} = 12.5 \text{ cm}$$

From the figure we observe:

Area of ΔSPQ = Area of ΔSRQ

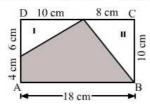
:. Area of the shaded region = 2 × (Area of $\triangle SPQ$) = 2 × $(\frac{1}{2}$ × SQ × OP) = 2 × $(\frac{1}{2}$ × 40 cm × 12.5 cm)

= 500 cm²

Q23

Answer:

(i) Area of rectangle ABCD = (10 cm x 18 cm) = 180 cm²

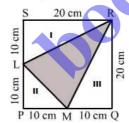


Area of triangle I = $\left(\frac{1}{2} \times 6 \times 10\right)$ cm² = 30 cm²

Area of triangle II = $\left(\frac{1}{2} \times 8 \times 10\right)$ cm² = 40 cm²

: Area of the shaded region = $\{180 - (30 + 40)\}$ cm² = $\{180 - 70\}$ cm² = 110 cm²

(ii) Area of square ABCD = $(\text{Side})^2 = (20 \text{ cm})^2 = 400 \text{ cm}^2$



Area of triangle I = $\left(\frac{1}{2} \times 10 \times 20\right)$ cm² = 100 cm²

Area of triangle II = $\left(\frac{1}{2} \times 10 \times 10\right)$ cm² = 50 cm²

Area of triangle III = $\left(\frac{1}{2} \times 10 \times 20\right)$ cm² = 100 cm²

 \therefore Area of the shaded region = {400 - (100 + 50 + 100)} cm² = {400 - 250}cm² = 150 cm²

Answer

024

Let ABCD be the given quadrilateral and let BD be the diagonal such that BD is of the length 24 cm. Let AL \perp BD and CM \perp BD

Then, AL = 5 cm and CM = 8 cm

Area of the quadrilateral ABCD = (Area of \triangle ABD + Area of \triangle CBD)

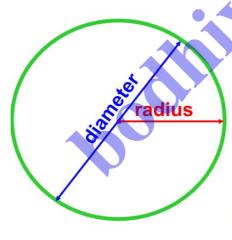
=
$$\left[\left(\frac{1}{2} \times BD \times AL\right) + \left(\frac{1}{2} \times BD \times CM\right)\right]$$
 sq. units
= $\left[\left(\frac{1}{2} \times 24 \times 5\right) + \left(\frac{1}{2} \times 24 \times 8\right)\right]$ cm²
= $(60 + 96)$ cm² = 156 cm²

com

Mensuration Exercise 20E

Name	Figure	Perimeter	Area
Rectangle	b a	2 (a + b)	ab
Square	a a a	4a	a²
Triangle	a hi c	a + b + c = 2s	$1 = \frac{1}{2} \times b \times h$ $2 = \sqrt{s(s-a)(s-b)(s-c)}$
Right triangle	h	b + h + d	1 bh
Equilateral triangle	a h a	3a	1. $\frac{1}{2}$ ah 2. $\frac{\sqrt{3}}{4}$ a ²
Isosceles right triangle	a d	2a + d	$\frac{1}{2}a^2$
Parallelogram	b/h /b	2 (a + b)	ah

	<u>/_h/</u>		
Rhombus	a d_1 d_2 a	4a	$\frac{1}{2} d_1 d_2$
Trapezium	h a	Sum of its four sides	1/2 h (a + b)
Circle	0 r	2πr	πr²
Semicircle	r r	πr + 2r	$\frac{1}{2} \pi^2$
Ring (shaded region)			$\pi \left(R^{2}-r^{2}\right)$
Sector of a circle	A C	$\begin{array}{c} I + 2r \\ \text{where} \\ I = (\theta/360) \\ \times 2\pi r \end{array}$	θ/360°× πr²



Area of a circle = π x radius²

Circumference of a circle = π x diameter

remember that the diameter = 2 x radius

Here, r = 15 cm

 \therefore Circumference = $2\pi r$

$$= (2 \times 3.14 \times 15) \text{ cm}$$

Hence, the circumference of the given circle is 94.2 cm

Q2

Answer:

(i) Here, r = 28 cm

∴ Circumference =
$$2\pi r$$

$$= \left(2 \times \frac{22}{7} \times 28\right) \text{cm}$$

Hence, the circumference of the given circle is 176 cm.

(ii) Here, r = 1.4 m

: Circumference =
$$2\pi r$$

=
$$\left(2 \times \frac{22}{7} \times 1.4\right)$$
 m
= $\left(2 \times 22 \times 0.2\right)$ m = 8.8 m

com

Hence, the circumference of the given circle is 8.8 m.

Q3

Answer:

(i) Here, d = 35 cm

Circumference =
$$2\pi r$$

=
$$(\pi d)$$
 [since $2r = d$]
= $(\frac{22}{7} \times 35)$ cm = (22×5) = 410 cm

Hence, the circumference of the given circle is 110 cm.

(ii) Here, d = 4.9 m

Circumference = $2\pi r$

=
$$(\pi d)$$
 [since $2r = d$]
= $(\frac{22}{7} \times 4.9)$ m = (22×0.7) = 15.4 m

Hence, the circumference of the given circle is 15.4 m.

Q4

Answer:

Circumference of the given circle = 57.2 cm

Let the radius of the given circle be r cm.

$$C = 2\pi r$$

$$\Rightarrow r = \frac{\mathbf{C}}{2\pi} \text{ cm}$$

$$\Rightarrow I = \left(\frac{2\pi}{2} \times \frac{7}{22}\right) \text{ cm} = 9.1 \text{ cm}$$

Thus, radius of the given circle is 9.1 cm.

Q5

Answer:

Circumference of the given circle = 63.8 m

Let the radius of the given circle be r cm.

$$C = 2\pi r$$

$$\Rightarrow r = \frac{C}{C}$$

$$\Rightarrow r = \left(\frac{63.8}{2} \times \frac{7}{22}\right) \text{m} = 10.15 \text{ m}$$

: Diameter of the given circle = $2r = (2 \times 10.15)$ m = 20.3 m

Q6

Answer:

Let the radius of the given circle be r cm.

Then, its circumference = $2\pi r$

Given:

(Circumference) - (Diameter) = 30 cm

$$\therefore (2\pi \mathbf{r} \cdot 2r) = 30$$

$$\Rightarrow 2\mathbf{r}(\pi - 1) = 30$$

$$\Rightarrow 2\mathbf{r}\left(\frac{22}{7} - 1\right) = 30$$

$$\Rightarrow 2\mathbf{r} \times \frac{15}{7} = 30$$

$$\Rightarrow \mathbf{r} = \left(30 \times \frac{7}{30}\right) = 7$$

: Radius of the given circle = 7 cm

Q7

Answer:

Let the radii of the given circles be 5x and 3x, respectively Let their circumferences be C₁ and C_{2,} respectively.

$$extsf{C}_1$$
 = $2 imes\pi imes5m{x}=10\pim{x}$

$$C_2 = 2 \times \pi \times 3x = 6\pi x$$

$$\therefore \frac{C_1}{C_2} = \frac{10\pi x}{6\pi x} = \frac{5}{3}$$

$$\Rightarrow C_1: C_2 = 5:3$$

Hence, the ratio of the circumference of the given circle is 5:3.

Q8

Answer:

Radius of the circular field, r = 21 m.

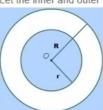
Distance covered by the cyclist = Circumference of the circular field

$$=2\pi \mathbf{r}$$

$$=\left(2\times\frac{22}{7}\times21\right)\,\mathrm{m}=132\;\mathrm{m}$$
 Speed of the cyclist = 8 km per hour =
$$\frac{8000\,\mathrm{m}}{\left(60\times60\right)\,\mathrm{s}}=\left(\frac{8000}{3600}\right)\!\mathrm{m/s}=\left(\frac{20}{9}\right)\!\mathrm{m/s}$$

Time taken by the cyclist to cover the field = $\frac{Distance\ covered\ by\ the\ cyclist}{Speed\ of\ the\ cyclist}$

Let the inner and outer radii of the track be r metres and R metres, respectively.



Then, $2\pi r = 528$

$$2\pi R = 616$$

$$\Rightarrow 2 \times \frac{22}{7} \times r = 528$$

$$2 \times \frac{22}{7} \times R = 616$$

$$\Rightarrow r = \left(528 \times \frac{7}{44}\right) = 84$$

$$R = \left(616 \times \frac{7}{44}\right) = 98$$

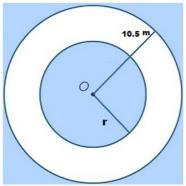
$$\Rightarrow$$
 (R - r) = (98 - 84) m = 14 m

Hence, the width of the track is 14 m.

Q10

Answer:

Let the inner and outer radii of the track be r metres and (r + 10.5) metres, respectively.



Inner circumference = 330 m

$$\therefore 2\pi \mathbf{r} = 330 \Rightarrow 2 \times \frac{22}{7} \times \mathbf{r} = 330$$
$$\Rightarrow r = \left(330 \times \frac{7}{44}\right) = 52.5 \text{ m}$$

Inner radius of the track = 52.5 m

- ∴ Outer radii of the track = (52.5 + 10.5) m = 63 m
- :. Circumference of the outer circle = $\left(2 \times \frac{22}{7} \times 63\right)$ m = 396 m

Rate of fencing = Rs. 20 per metre

 \therefore Total cost of fencing the outer circle = Rs. (396 \times 20) = Rs. 7920

Q11

Answer:

We know that the concentric circles are circles that form within each other, around a common centre point.

Radius of the inner circle, r = 98 cm

 \therefore Circumference of the inner circle = $2\pi r$

$$= \left(2 \times \frac{22}{7} \times 98\right) \text{ cm} = 616 \text{ cm}$$

Radius of the outer circle, R = 1 m 26 cm = 126 cm

[since 1 m = 100 cm]

 \therefore Circumference of the outer circle = $2\pi R$

$$= \left(2 \times \frac{22}{7} \times 126\right)$$
 cm = 792 cm

 \therefore Difference in the lengths of the circumference of the circles = (792 - 616) cm = 176 cm. Hence, the circumference of the second circle is 176 cm larger than that of the first circle.

Length of the wire = Perimeter of the equilateral triangle

= 3 × Side of the equilateral triangle = (3 × 8.8) cm = 26.4 cm

Let the wire be bent into the form of a circle of radius r cm.

Circumference of the circle = 26.4 cm

$$\begin{array}{l} \Rightarrow 2\pi \mathbf{r} = 26.4 \\ \Rightarrow 2 \times \frac{22}{7} \times \mathbf{r} = 26.4 \\ \Rightarrow r = \left(\frac{26.4 \times 7}{2 \times 22}\right) \text{ cm} = 4.2 \text{ cm} \end{array}$$

: Diameter = $2r = (2 \times 4.2)$ cm = 8.4 cm

Hence, the diameter of the ring is 8.4 cm.

Q13

Answer:

Circumference of the circle = Perimeter of the rhombus

= 4
$$\times$$
 Side of the rhombus = (4 \times 33) cm = 132 cm

∴ Circumference of the circle = 132 cm

$$\begin{array}{l} \Rightarrow 2\pi\mathbf{r} = 132 \\ \Rightarrow 2 \times \frac{22}{7} \times \mathbf{r} = 132 \\ \Rightarrow r = \left(\frac{132 \times 7}{2 \times 22}\right) \text{cm} = 21 \text{ cm} \end{array}$$

Hence, the radius of the circle is 21 cm.

Q14

Answer:

Length of the wire = Perimeter of the rectangle

$$= 2(l+b) = 2 \times (18.7 + 14.3)$$
 cm $= 66$ cm

Let the wire be bent into the form of a circle of radius rem

Circumference of the circle = 66 cm

$$\Rightarrow 2\pi \mathbf{r} = 66$$

$$\Rightarrow \left(2 \times \frac{22}{7} \times \mathbf{r}\right) = 66$$

$$\Rightarrow r = \left(\frac{60 \times 7}{2 \times 22}\right) \text{ cm} = 10.5 \text{ cm}$$

Hence, the radius of the circle formed is 10.5 cm.

Q15

Answer:

It is given that the radius of the circle is 35 cm.

Length of the wire = Circumference of the circle

$$\Rightarrow$$
 Circumference of the circle = $2\pi \mathbf{r}$ = $\left(2 \times \frac{22}{7} \times 35\right)$ cm = 220 cm

Let the wire be bent into the form of a square of side a cm.

Perimeter of the square = 220 cm

⇒
$$4a = 220$$

⇒ $a = \left(\frac{220}{4}\right)$ cm = 55 cm

Hence, each side of the square will be 55 cm.

Length of the hour hand (r)= 4.2 cm.

Distance covered by the hour hand in 12 hours = $2\pi r = \left(2 \times \frac{22}{7} \times 4.2\right)$ cm = 26.4 cm

 \therefore Distance covered by the hour hand in 24 hours = (2 \times 26.4) = 52.8 cm

Length of the minute hand (R)= 7 cm

Distance covered by the minute hand in 1 hour = $2\pi R$ = $\left(2 \times \frac{22}{7} \times 7\right)$ cm = 44 cm

- : Distance covered by the minute hand in 24 hours = (44 × 24) cm = 1056 cm
- \therefore Sum of the distances covered by the tips of both the hands in 1 day = (52.8 + 1056) cm = 1108.8 cm

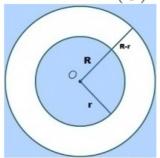
Q17

Answer:

Given:

Diameter of the well (d) = 140 cm.

Radius of the well $(r) = \left(\frac{140}{2}\right)$ cm = 70 cm



Let the radius of the outer circle (including the stone parapet) be R cm.

Length of the outer edge of the parapet = 616 cm

$$\Rightarrow 2\pi R = 616$$

$$\Rightarrow \left(2 \times \frac{22}{7} \times R\right) = 616$$

$$\Rightarrow R = \left(\frac{616 \times 7}{2 \times 22}\right) \text{ cm} = 98 \text{ cm}$$

Now, width of the parapet = {Radius of the outer circle (including the stone parapet) - Radius of the well}

$$= \{98 - 70\} \text{ cm} = 28 \text{ cm}$$

Hence, the width of the parapet is 28 cm.

Q18

Answer:

It may be noted that in one rotation, the bus covers a distance equal to the circumference of the wheel. Now, diameter of the wheel = 98 cm

.. Circumference of the wheel = πd = $\left(\frac{22}{7} \times 98\right)$ cm = 308 cm

Thus, the bus travels 308 cm in one rotation.

 \therefore Distance covered by the bus in 2000 rotations = (308 \times 2000) cm

It may be noted that in one revolution, the cycle covers a distance equal to the circumference of the wheel.

Diameter of the wheel = 70 cm

:. Circumference of the wheel = πd = $\left(\frac{22}{7} \times 70\right)$ cm = 220 cm

Thus, the cycle covers 220 cm in one revolution.

: Distance covered by the cycle in 250 revolutions = (220 × 250) cm

[since 1 m = 100 cm]

Hence, the cycle will cover 550 m in 250 revolutions.

Q20

Answer:

Diameter of the wheel = 77 cm

 \Rightarrow Radius of the wheel = $\left(\frac{77}{2}\right)$ cm

Circumference of the wheel = $2\pi r$

=
$$2\pi r$$

= $\left(2 \times \frac{22}{7} \times \frac{77}{2}\right)$ cm = (22 × 11) cm = 242 cm
= $\left(\frac{242}{100}\right)$ m = $\left(\frac{121}{50}\right)$ m

Distance covered by the wheel in 1 revolution = $\left(\frac{121}{50}\right)$ m

Now, $\left(\frac{121}{50}\right)$ m is covered by the car in 1 revolution.

(121 \times 1000) m will be covered by the car in $\left(1 \times \frac{50}{121} \times 121 \times 1000\right)$ revolutions, i.e. 50000 revolutions.

∴ Required number of revolutions = 50000

Q21

Answer:

It may be noted that in one revolution, the bicycle covers a distance equal to the circumference of the

Total distance covered by the bicycle in 5000 revolutions = 11 km

⇒ 5000 × Circumference of the wheel ≠ 11000 m

[since 1 km = 1000 m]

Circumference of the wheel = $\begin{pmatrix} 11000 \\ 5000 \end{pmatrix}$ m = 2.2 m = 220 cm

[since 1 m = 100 cm]

Circumference of the wheel $= \pi \times Diameter$ of the wheel

- \Rightarrow 220 cm = $\frac{22}{2}$ × Diameter of the wheel
- ⇒ Diameter of the wheel = $\left(\frac{220 \times 7}{22}\right)$ cm = 70 cm

Hence, the circumference of the wheel is 220 cm and its diameter is 70 cm.

Mensuration Exercise 20F

Name	Figure	Perimeter	Area
Rectangle	b a p	2 (a + b)	ab
Square	a a a	4a	a²
Triangle	a hi c	a + b + c = 2s	$1 = \frac{1}{2} \times b \times h$ $2 = \sqrt{s(s-a)(s-b)(s-c)}$
Right triangle	h	b+h+d	1 bh
Equilateral triangle	a h a	За	1. $\frac{1}{2}$ ah 2. $\frac{\sqrt{3}}{4}$ a ²
sosceles right triangle	a	2a + d	$\frac{1}{2}$ a ²
Parallelogram	a b h a	2 (a + b)	ah

Rhombus	a d_1 d_2 a	4a	$\frac{1}{2} d_1 d_2$
Trapezium	h a	Sum of its four sides	1/2 h (a + b)
Circle	0 <u>r</u>	2πr	πr²
Semicircle	r r	πr + 2r	$\frac{1}{2} \pi^2$
Ring (shaded region)			$\pi \left(R^{2} - r^{2} \right)$
Sector of a circle	A C	I + 2r where I = (θ/360) × 2πr	θ/360°×πr²

ison a radius

Area of a circle = π x radius²

Circumference of a circle = π x diameter

remember that the diameter = 2 x radius

(i) Given:

r = 21 cm

 \therefore Area of the circle = (πr^2) sq. units $=\left(\frac{22}{7}\times21\times21\right)$ cm² = $(22\times3\times21)$ cm² = 1386 cm²

(ii) Given:

r = 3.5 m

Area of the circle = $\left(\pi r^2\right)$ sq. units = $\left(\frac{22}{7} \times 3.5 \times 3.5\right)$ m² = $(22 \times 0.5 \times 3.5)$ m² = 38.5 m²

Q2

Answer:

(i) Given:

 $d = 28 \text{ cm} \Rightarrow r = \left(\frac{d}{2}\right) = \left(\frac{28}{2}\right) \text{ cm} = 14 \text{ cm}$

Area of the circle =
$$\left(\pi r^2\right)$$
 sq. units = $\left(\frac{22}{7} \times 14 \times 14\right)$ cm² = $\left(22 \times 2 \times 14\right)$ cm² = 616 cm²

(ii) Given:

(ii) GiVen.
$$r = 1.4 \text{ m} \Rightarrow r = \left(\frac{d}{2}\right) = \left(\frac{1.4}{2}\right) \text{m} = 0.7 \text{ m}$$
Area of the circle = $\left(\pi \mathbf{r}^2\right)$ sq. units
$$= \left(\frac{22}{7} \times 0.7 \times 0.7\right) \text{m}^2 = \left(22 \times 0.1 \times 0.7\right) \text{m}^2 = 1.54 \text{ m}^2$$

Q3

Answer:

Let the radius of the circle be r cm.

Circumference = $(2\pi r)$ cm

$$\therefore (2\pi \mathbf{r}) = 264$$

$$\Rightarrow \left(2 \times \frac{22}{7} \times \mathbf{r}\right) = 264$$

$$\Rightarrow r = \left(\frac{264 \times 7}{2 \times 22}\right) = 42$$

: Area of the circle =

$$=\left(\frac{22}{7}\times42\times42\right)$$
 cm²

Q4

Answer:

Let the radius of the circle be r m.

Then, its circumference will be $(2\pi r)$ m.

$$\therefore (2\pi \mathbf{r}) = 35.2$$

$$\Rightarrow \left(2 \times \frac{22}{7} \times \mathbf{r}\right) = 35.2$$

$$\Rightarrow r = \left(\frac{35.2 \times 7}{2 \times 22}\right) = 5.6$$

∴ Area of the circle =
$$\pi \mathbf{r}^2$$

= $\left(\frac{22}{7} \times 5.6 \times 5.6\right)$ m² = 98.56 m²

Let the radius of the circle be r cm.

Then, its area will be πr^2 cm².

$$\therefore \pi \mathbf{r}^2 = 616$$

$$\Rightarrow \left(\frac{22}{7} \times \mathbf{r} \times \mathbf{r}\right) = 616$$

$$\Rightarrow r^2 = \left(\frac{616 \times 7}{22}\right) = 196$$

$$\Rightarrow r = \sqrt{196} = 14$$

 \Rightarrow Circumference of the circle = $(2\pi r)$ cm = $\left(2 \times \frac{22}{7} \times 14\right)$ cm = 88 cm

Q6

Answer:

Let the radius of the circle be r m.

Then, area =
$$\pi r^2$$
 m²

$$\therefore \pi \mathbf{r}^2 = 1386$$

$$\Rightarrow \left(\frac{22}{7} \times \mathbf{r} \times \mathbf{r}\right) = 1386$$

$$\Rightarrow r^2 = \left(\frac{1386 \times 7}{22}\right) = 441$$

$$\Rightarrow r = \sqrt{441} = 21$$

 \Rightarrow Circumference of the circle = $(2\pi r)$ m $= \left(2 \times \frac{22}{7} \times 21\right) \text{ m} = 132 \text{ m}$

Q7

Answer:

Let r_1 and r_2 be the radii of the two given circles and A_1 and A_2 be their respective areas.

$$\begin{split} \frac{r_1}{r_2} &= \frac{4}{5} \\ \therefore \frac{A_1}{A_2} &= \frac{\pi r_1^2}{\pi r_2^2} = \frac{r_1^2}{r_2^2} = \left(\frac{r_1}{r_2}\right)^2 = \left(\frac{4}{5}\right)^2 = \frac{16}{25} \end{split}$$
Hence, the ratio of the areas of the given circles is 16:25

Q8

Answer:

If the horse is tied to a pole, then the pole will be the central point and the area over which the horse will graze will be a circle. The string by which the horse is tied will be the radius of the circle.

Radius of the circle (r) = Length of the string = 21 m

Now, area of the circle = $\pi \mathbf{r}^2 = \left(\frac{22}{7} \times 21 \times 21\right)$ m² = 1386 m² ∴ Required area = 1386 m²

Q9

Answer:

Let a be one side of the square.

Area of the square = 121 cm²

$$\Rightarrow a^2 = 121$$

$$\Rightarrow$$
 a = 11 cm (since 11 × 11 = 121)

Perimeter of the square = $4 \times \text{side} = 4a = (4 \times 11) \text{ cm} = 44 \text{ cm}$

Length of the wire = Perimeter of the square

The wire is bent in the form of a circle.

Circumference of a circle = Length of the wire

: Circumference of a circle = 44 cm

$$\Rightarrow 2\pi \mathbf{r} = 44$$

$$\Rightarrow \left(2 \times \frac{22}{7} \times r\right) = 44$$

$$\Rightarrow r = \left(\frac{44 \times 7}{2 \times 22}\right) = 7 \text{ cm}$$

$$\therefore$$
 Area of the circle = πr^2

$$= \left(\frac{22}{7} \times 7 \times 7\right) \text{ cm}^2$$
$$= 154 \text{ cm}^2$$

It is given that the radius of the circle is 28 cm.

Length of the wire = Circumference of the circle

$$\Rightarrow$$
 Circumference of the circle = $2\pi {f r} = \left(2 imes rac{22}{7} imes 28
ight)$ cm = 176 cm

Let the wire be bent into the form of a square of side a cm.

Perimeter of the square = 176 cm

⇒
$$4a = 176$$

⇒ $a = \left(\frac{176}{4}\right)$ cm = 44 cm

Thus, each side of the square is 44 cm.

Area of the square = $(Side)^2 = (a)^2 = (44 \text{ cm})^2$ = 1936 cm²

∴ Required area of the square formed = 1936 cm²

Q11

Answer:

Area of the acrylic sheet = $34 \text{ cm} \times 24 \text{ cm} = 816 \text{ cm}^2$ Given that the diameter of a circular button is 3.5 cm.

∴ Radius of the circular button (r)= $\left(\frac{3.5}{2}\right)$ cm = 1.75 cm

 \therefore Area of 1 circular button = πr^2

$$= \left(\frac{22}{7} \times 1.75 \times 1.75\right) \text{ cm}^2$$
$$= 9.625 \text{ cm}^2$$

 \therefore Area of 64 such buttons = (64 \times 9.625) cm² = 616 cm²

Area of the remaining acrylic sheet = (Area of the acrylic sheet - Area of 64 circular buttons)

$$= (816 - 616) \text{ cm}^2 = 200 \text{ cm}^2$$

Q12

Answer:

Area of the rectangular ground = 90 m \times 32 m = (90 \times 32) m² = 2880 m²

Radius of the circular tank (r) = 14 m

- ∴ Area covered by the circular tank = $\pi r^2 = \left(\frac{22}{7} \times 14 \times 14\right) \text{ m}^2$
- :. Remaining portion of the rectangular ground for turfing = (Area of the rectangular ground Area covered by the circular tank)

$$= (2880 - 616) \text{ m}^2 = 2264 \text{ m}^2$$

Rate of turfing = Rs 50 per sq. metre

: Total cost of turfing the remaining ground = Rs (50 × 2264) = Rs 1,13,200

Q13

Answer:

Area of each of the four quadrants is equal to each other with radius 7 cm.

Area of the square ABCD = $(Side)^2 = (14 cm)^2 = 196 cm^2$

Sum of the areas of the four quadrants =
$$\left(4 \times \frac{1}{4} \times \frac{22}{7} \times 7 \times 7\right)$$
 cm²

$$= 154 \text{ cm}^2$$

: Area of the shaded portion = Area of square ABCD - Areas of the four quadrants

$$= (196 - 154) \text{ cm}^2$$

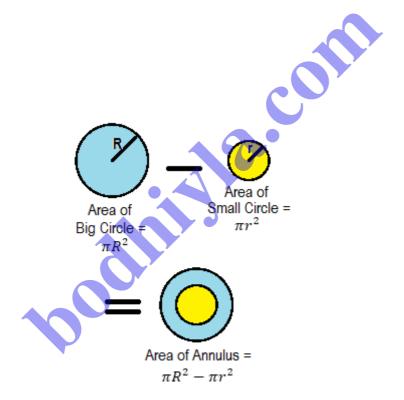
$$= 42 \text{ cm}^2$$

Let ABCD be the rectangular field.

Here, AB = 60 m BC = 40 m

Let the horse be tethered to corner A by a 14 m long rope.

Then, it can graze through a quadrant of a circle of radius 14 m. $\therefore \text{ Required area of the field} = \left(\frac{1}{4} \times \frac{22}{7} \times 14 \times 14\right) \text{ m}^2 = 154 \text{ m}^2$ Hence, horse can graze 154 m² area of the rectangular field.



Diameter of the big circle = 21 cm

Radius =
$$\left(\frac{21}{2}\right)$$
 cm = 10.5 cm

∴ Area of the bigger circle =
$$\pi \mathbf{r}^2 = \left(\frac{22}{7} \times 10.5 \times 10.5\right) \text{ cm}^2$$

= 346.5 cm²

Diameter of circle I = $\frac{2}{3}$ of the diameter of the bigger circle

$$=\frac{2}{3}$$
 of 21 cm $=\left(\frac{2}{3}\times21\right)$ cm $=14$ cm

Radius of circle I (
$$r_1$$
) = $\left(\frac{14}{2}\right)$ cm = 7 cm

∴ Area of circle I =
$$\pi \mathbf{r}_1^2 = \left(\frac{22}{7} \times 7 \times 7\right) \text{ cm}^2$$

= 154 cm²

Diameter of circle II = $\frac{1}{3}$ of the diameter of the bigger circle

$$=\frac{1}{3}$$
 of 21 cm $=\left(\frac{1}{3}\times21\right)$ cm $= 7$ cm

Radius of circle II
$$(r_2) = \left(\frac{7}{2}\right)$$
 cm = 3.5 cm

: Area of circle II =
$$\pi r_2^2 = \left(\frac{22}{7} \times 3.5 \times 3.5\right) \text{ cm}^2$$

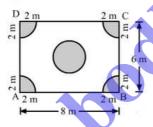
= 38.5 cm²

$$= 154 \text{ cm}^2$$

Hence, the area of the shaded portion is 154 cm2

Q16

Answer:



Let ABCD be the rectangular plot of land that measures 8 m by 6 m.

$$\therefore$$
 Area of the plot = (8 m \times 6 m) = 48 m²

Area of the four flower beds =
$$\left(4 \times \frac{1}{4} \times \frac{22}{7} \times 2 \times 2\right)$$
 m² = $\left(\frac{88}{7}\right)$ m²

Area of the circular flower bed in the middle of the plot = πr^2

$$= \left(\frac{22}{7} \times 2 \times 2\right) \text{ m}^2 = \left(\frac{88}{7}\right) \text{ m}^2$$

Area of the remaining part =
$$\left\{48 - \left(\frac{88}{7} + \frac{88}{7}\right)\right\} \text{ m}^2$$

= $\left\{48 - \frac{176}{7}\right\} \text{ m}^2$
= $\left\{\frac{336 - 176}{7}\right\} \text{ m}^2 = \left(\frac{160}{7}\right) \text{ m}^2 = 22.86 \text{ m}^2$

∴ Required area of the remaining plot = 22.86 m²

Mensuration Exercise 20G

Name	Figure	Perimeter	Area
Rectangle	b a	2 (a + b)	ab
Square	a a a	4a	a²
Triangle	a h c b	a + b + c = 2s	$1 = \frac{1}{2} \times b \times h$ $2 = \sqrt{s(s-a)(s-b)(s-c)}$
Right triangle	р Д	b + h + d	$\frac{1}{2}$ bh
Equilateral triangle	a h a	3a	1. $\frac{1}{2}$ ah 2. $\frac{\sqrt{3}}{4}$ a ²
Isosceles right triangle	a	2a + d	$\frac{1}{2}a^2$
Parallelogram	a b/h /b	2 (a + b)	ah

Rhombus	a d_1 d_2 a	4a	$\frac{1}{2} d_1 d_2$
Trapezium	h a	Sum of its four sides	1/2 h (a + b)
Circle	0 <u>r</u>	2πr	πr²
Semicircle	r r	πr + 2r	$\frac{1}{2} \pi r^2$
Ring (shaded region)			$\pi (R^2 - r^2)$
Sector of a circle	A C	I + 2r where I = (θ/360) × 2πr	θ/360°*πr²

Mensuration RS Aggarwal Class 7 Maths Solutions Exercise 20G

Q1

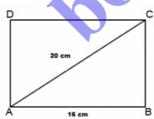
Answer:

(c) 192 cm²

Let ABCD be the rectangular plot.

Then, AB = 16 cm

$$AC = 20 \text{ cm}$$



Let BC = x cm

From right triangle ABC:

$$AC^2 = AB^2 + BC^2$$

$$\Rightarrow (20)^2 = (16)^2 + x^2$$

$$\Rightarrow x^2 = (20)^2 - (16)^2 \Rightarrow \{400 - 256\} = 144$$

$$\Rightarrow x = \sqrt{144} = 12$$

 \therefore Area of the plot = (16 × 12) cm² = 192 cm²

Q2

Answer:

(b) 72 cm²

Given:

Diagonal of the square = 12 cm

Given:
Diagonal of the square = 12 cm

$$\therefore \text{ Area of the square} = \left\{ \frac{1}{2} \times (\text{Diagonal})^2 \right\} \text{ sq. units.}$$

$$= \left\{ \frac{1}{2} \times (12)^2 \right\} \text{ cm}^2$$

$$= 72 \text{ cm}^2$$

Q3

Answer:
(b) 20 cm

Q3

Answer:

(b) 20 cm

Area of the square = $\left\{\frac{1}{2} \times (Diagonal)^2\right\}$ Area of the square field = 200 cm²

Diagonal of a square = $\sqrt{2} \times \text{Area}$ of the square = $(\sqrt{2} \times 200)$ cm = $(\sqrt{400})$ cm = 20 cm

∴ Length of the diagonal of the square = 20 cm

Q4

Answer:

(a) 100 m

Area of the square = $\left\{\frac{1}{2} \times (Diagonal)^2\right\}$ sq. units.

Given:

Area of square field = 0.5 hectare $= (0.5 \times 10000)$ m² [since 1 hectare = 10000 m²] $= 5000 \text{ m}^2$

Diagonal of a square = $\sqrt{2 \times Area}$ of the square $=(\sqrt{2\times5000})$ m = 100 m

Hence, the length of the diagonal of a square field is 100 m.

(c) 90 m

Let the breadth of the rectangular field be x m.

Length = 3x m

Perimeter of the rectangular field = 2(I + b)

$$\Rightarrow$$
 240 = 2($x + 3x$)

$$\Rightarrow$$
 240 = 2(4x)

$$\Rightarrow$$
 240 = 8x \Rightarrow x = $\left(\frac{240}{8}\right) = 30$

: Length of the field = $3x = (3 \times 30)$ m = 90 m

Q6

Answer:

(d) 56.25%

Let the side of the square be a cm.

Area of the square = $(a)^2$ cm²

Increased side = (a + 25% of a) cm

$$=\left(a+\frac{25}{100}a\right)\,\mathrm{cm}=\left(a+\frac{1}{4}a\right)\mathrm{cm}=\left(\frac{5}{4}a\right)\,\mathrm{cm}$$
 Area of the square
$$=\left(\frac{5}{4}a\right)^2\mathrm{cm}^2=\left(\frac{25}{16}a^2\right)\,\mathrm{cm}^2$$
 Increase in the area
$$=\left[\left(\frac{25}{16}a^2\right)-a^2\right]\,\mathrm{cm}^2=\left(\frac{25a^2-16a^2}{16}\right)\,\mathrm{cm}^2=\left(\frac{9a^2}{16}\right)\,\mathrm{cm}^2$$
 % increase in the area
$$=\frac{\mathrm{Increased}}{\mathrm{Old}}\frac{\mathrm{area}}{\mathrm{area}}\times 100$$

$$=\left[\frac{\left(\frac{9}{16}a^2\right)}{a^2}\times 100\right]=\left(\frac{9\times 100}{16}\right)=56.25$$

Q7

Answer:

(b) 1.2

Let the side of the square be a

Length of its diagonal = $\sqrt{2}a$

$$\therefore \text{ Required ratio} = \frac{a^2}{(\sqrt{2}a)^3} = \frac{a^3}{2a^2} = \frac{1}{2} = 1.72$$

Q8

Answer:

(c)
$$A > B$$

We know that a square encloses more area even though its perimeter is the same as that of the rectangle.

: Area of a square > Area of a rectangle

Q9

Answer:

(b) 13500 m²

Let the length of the rectangular field be 5x.

Breadth = 3x

Perimeter of the field = 2(l + b) = 480 m (given)

$$\Rightarrow 480 = 2(5x + 3x) \Rightarrow 480 = 16x$$

$$\Rightarrow \chi = \frac{480}{16} = 30$$

:. Length = $5x = (5 \times 30) = 150 \text{ m}$

Breadth = $3x = (3 \times 30) = 90 \text{ m}$

: Area of the rectangular park = 150 m x 90 m = 13500 m²

(a) 6 m

Total cost of carpeting = Rs 6000

Rate of carpeting = Rs 50 per m

- \therefore Length of the carpet = $\left(\frac{6000}{50}\right)$ m = 120 m
- \therefore Area of the carpet = $\left(120 \times \frac{75}{100}\right)$ m² = 90 m² [since 75 cm = $\frac{75}{100}$ m]

Area of the floor = Area of the carpet = 90 m²

 \therefore Width of the room = $\left(\frac{\text{Area}}{\text{Length}}\right) = \left(\frac{90}{15}\right) \, m = 6 \; m$

Q11

Answer:

(a) 84 cm²

Let a = 13 cm, b = 14 cm and c = 15 cm

Then,
$$s = \frac{a+b+c}{2} = \left(\frac{13+14+15}{2}\right) \text{ cm} = 21 \text{ cm}$$

Then,
$$s = \frac{a+b+c}{2} = \left(\frac{13+14+15}{2}\right)$$
 cm = 21 cm
 \therefore Area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ sq. units
= $\sqrt{21(21-13)(21-14)(21-15)}$ cm²
= $\sqrt{21\times8\times7\times6}$ cm²
= $\sqrt{3\times7\times2\times2\times2\times7\times2\times3}$ cm²
= $(2\times2\times3\times7)$ cm²
= 84 cm²
Q12
Answer:
(b) 48 m²
Base = 12 m
Height = 8 m
Area of the triangle = $\left(\frac{1}{2}\times \text{Base}\times \text{Height}\right)$ sq. units

Q12

Answer:

(b) 48 m²

Base = 12 m

Height = 8 m

Area of the triangle =
$$\left(\frac{1}{2} \times \mathbf{Base} \times \mathbf{Height}\right)$$
 sq. units = $\left(\frac{1}{2} \times 12 \times 8\right)$ m² = 48 m²

Q13

Answer:

(b) 4 cm

Area of the equilateral triangle = $4\sqrt{3}$ cm²

We know:

Area of an equilateral triangle = $\frac{\sqrt{3}}{4}$ (side)² sq. units

$$\text{ : Side of the equilateral triangle} = \left[\sqrt{\left(\frac{4 \times \text{Area}}{\sqrt{3}} \right)} \right] \text{ cm}$$

$$= \left[\sqrt{\left(\frac{4 \times 4 \sqrt{3}}{\sqrt{3}} \right)} \right] \text{ cm} = \left(\sqrt{4 \times 4} \right) \text{ cm} = \left(\sqrt{16} \right) \text{cm} = 4 \text{ cm}$$

Q14

Answer:

(c)
$$16\sqrt{3}$$
 cm²

It is given that one side of an equilateral triangle is 8 cm.

$$\therefore$$
 Area of the equilateral triangle = $\frac{\sqrt{3}}{4} \left(\text{Side} \right)^2 \, \text{sq.}$ units
$$= \frac{\sqrt{3}}{4} \left(8 \right)^2 \, \text{cm}^2 \\ = \left(\frac{\sqrt{3}}{4} \times 64 \right) \, \text{cm}^2 = 16 \sqrt{3} \, \text{cm}^2$$

(b) $2\sqrt{3} \text{ cm}^2$

Let $\triangle ABC$ be an equilateral triangle with one side of the length a cm.

Diagonal of an equilateral triangle = $\frac{\sqrt{3}}{2} a$ cm

$$\Rightarrow \frac{\sqrt{3}}{2} a = \sqrt{6}$$

$$\Rightarrow \frac{\sqrt{3}}{2} a = \sqrt{6}$$

$$\Rightarrow a = \frac{\sqrt{6} \times 2}{\sqrt{3}} = \frac{\sqrt{3} \times \sqrt{2} \times 2}{\sqrt{3}} = 2\sqrt{2} \text{ cm}$$

Area of the equilateral triangle =
$$\frac{\sqrt{3}}{4} a^2$$
 = $\frac{\sqrt{3}}{4} (2\sqrt{2})^2$ cm² = $(\frac{\sqrt{3}}{4} \times 8)$ cm² = $2\sqrt{3}$ cm²

COM

Q16

Answer:

(b) 72 cm²

Base of the parallelogram = 16 cm

Height of the parallelogram = 4.5 cm

 \therefore Area of the parallelogram = Base \times Height

$$= (16 \times 4.5) \text{ cm}^2 = 72 \text{ cm}^2$$

Q17

Answer:

(b) 216 cm²

Length of one diagonal = 24 cm

Length of the other diagonal = 18 cm

 \therefore Area of the rhombus = $\frac{1}{2}$ × (Product of the diagonals)

rhombus =
$$\frac{1}{2}$$
 × (Product of the diagonals)
= $\left(\frac{1}{2} \times 24 \times 18\right)$ cm² = 216 cm²

Q18

Answer:

(c) 154 cm²

Let the radius of the circle be r cm.

Circumference = $2\pi r$

(Circumference) - (Radius) = 37

$$\therefore (2\pi \mathbf{r} - \mathbf{r}) = 37$$

$$\Rightarrow r(2\pi - 1) = 37$$

∴ Radius of the given circle is 7 cm.
∴ Area =
$$\pi \mathbf{r}^2 = \left(\frac{22}{7} \times 7 \times 7\right)$$
 cm² = 154 cm²

(c) 54 m²

Given:

Perimeter of the floor = 2(l + b) = 18 m

Height of the room = 3 m

 \therefore Area of the four walls = $\{2(l+b) \times h\}$ = Perimeter × Height $= 18 \text{ m} \times 3 \text{ m} = 54 \text{ m}^2$

Q20

Answer:

(a) 200 m

Area of the floor of a room = $14 \text{ m} \times 9 \text{ m} = 126 \text{ m}^2$

Width of the carpet = 63 cm = 0.63 m

(since 100 cm = 1 m)

 $\therefore \text{ Required length of the carpet} = \frac{\text{Area} \quad \text{of} \quad \text{the} \quad \text{floor} \quad \text{of a room}}{\text{Width} \quad \text{of the}} \quad \frac{\text{of a room}}{\text{carpet}}$ $=\left(\frac{126}{0.63}\right)$ m = 200 m

Q21

Answer:

(c) 120 cm²

Let the length of the rectangle be x cm and the breadth be y cm. Area of the rectangle = xy cm²

Perimeter of the rectangle = 2(x + y) = 46 cm

$$\Rightarrow 2(x+y) = 46$$

$$\Rightarrow$$
 ($x + y$) = $\left(\frac{46}{2}\right)$ cm = 23 cm

Diagonal of the rectangle = $\sqrt{x^2 + y^2}$ $\Rightarrow \sqrt{x^2 + y^2}$ = 17

$$\Rightarrow \sqrt{x^2 + y^2} = 17$$

Squaring both the sides, we ge

$$\Rightarrow x^2 + y^2 = (17)^2$$

$$\Rightarrow x^2 + y^2 = 289$$

Now,
$$(x^2 + y^2) = (x + y)^2 - 2x$$

 $\Rightarrow 2xy = (x + y)^2 - (x^2 + y^2)$
 $= (23)^2 - 289$
 $= 529 - 289 = 240$
 $\therefore xy = \left(\frac{240}{2}\right) \text{ cm}^2 = 120 \text{ cm}^2$

Q22

Answer:

(b) 3:1

Let a side of the first square be a cm and that of the second square be b cm.

Then, their areas will be a2 and b2, respectively.

Their perimeters will be 4a and 4b, respectively.

According to the question:
$$\frac{a^2}{b^2} = \frac{9}{1} \Rightarrow \left(\frac{a}{b}\right)^2 = \frac{9}{1} = \left(\frac{3}{1}\right)^2 \Rightarrow \frac{a}{b} = \frac{3}{1}$$

 \therefore Required ratio of the perimeters = $\frac{4a}{4b} = \frac{4\times 3}{4\times 1} = \frac{3}{1}$ = 3:1

(d) 4:1

Let the diagonals be 2d and d. Area of the square = sq. units Required ratio =

Q24

Answer:

(c) 49 m

Let the width of the rectangle be x m.

Given:

Area of the rectangle = Area of the square

$$\Rightarrow$$
 (144 × x) = 84 × 84

: Width (x) =
$$\left(\frac{84 \times 84}{144}\right)$$
m = 49 m

Hence, width of the rectangle is 49 m.

Q25

Answer:

(d)
$$4:\sqrt{3}$$

Let one side of the square and that of an equilateral triangle be the same, i.e. a un

Then, Area of the square = $(Side)^2 = (a)^2$

Area of the equilateral triangle =
$$\frac{\sqrt{3}}{4} \left(Side \right)^2 = \frac{\sqrt{3}}{4} \left(a \right)^2$$

$$\therefore$$
 Required ratio = $\frac{a^2}{\frac{\sqrt{3}}{2}a^2}=\frac{4}{\sqrt{3}}=4$: $\sqrt{3}$

Q26

Answer:

(a)
$$\sqrt{\pi}:1$$

Let the side of the square be x cm and the radius of the circle be r cm.

Area of the square = Area of the circle

$$\Rightarrow (x)^2 = \pi r^2$$

$$\therefore$$
 Side of the square $(x) = \sqrt{\pi r}$

.. Side of the square ($x = \sqrt{\pi r}$)... Side of the square Required ratio =

$$=\frac{x}{r}=\frac{\sqrt{\pi}r}{r}=\frac{\sqrt{\pi}}{1}=\sqrt{\pi}:1$$

Q27

Answer:

(b)
$$\frac{49\sqrt{3}}{4}$$
 cm²

Let the radius of the circle be r cm.

Then, its area =
$$\pi r^2$$
 cm²

$$\pi r^2 = 154$$

$$\Rightarrow \frac{22}{7} \times r \times r = 154$$

$$\Rightarrow r^2 = \left(\frac{154 \times 7}{22}\right) = 49$$

$$\rightarrow r = \sqrt{40} \text{ cm} = 7 \text{ cm}$$

Side of the equilateral triangle = Radius of the circle

: Area of the equilateral triangle = $\frac{\sqrt{3}}{4} \left(\text{side} \right)^2$ sq. units

$$=\frac{\sqrt{3}}{4}(7)^2$$
 cm²

$$=\frac{49\sqrt{3}}{4} \text{ cm}^2$$

(c) 12 cm

Area of the rhombus = $\frac{1}{2}$ × (Product of the diagonals)

Length of one diagonal = 6 cm

Area of the rhombus = 36 cm²

∴ Length of the other diagonal = $\left(\frac{36\times2}{6}\right)$ cm = 12 cm

Q30

Answer:

(c) 17.60 m

Let the radius of the circle be r m.

Area =
$$\pi r^2$$
 m²

$$\therefore \pi \mathbf{r}^2 = 24.64$$

$$\Rightarrow \left(\frac{22}{7} \times r \times r\right) = 24.64$$

$$\Rightarrow r^2 = \left(\frac{24.64 \times 7}{22}\right) = 7.84$$

$$\Rightarrow r = \sqrt{7.84} = 2.8 \text{ m}$$

$$\Rightarrow$$
 Circumference of the circle = $(2\pi r)$ m

$$= (2\pi \mathbf{r}) \text{ m}$$

$$= \left(2 \times \frac{22}{7} \times 2.8\right) \text{ m} = 17.60 \text{ m}$$
and circle is a cm

Q31

Answer:

(c) 3 cm

Suppose the radius of the original circle is Area of the original circle = πr^2

Radius of the circle = (r + 1) cm

According to the question:

$$\pi(r+1)^2 = \pi r^2 + 22$$

$$\pi(\mathbf{r}+1)^2 = \pi \mathbf{r}^2 + 22$$

 $\Rightarrow \pi(\mathbf{r}^2 + 1 + 2\mathbf{r}) = \pi \mathbf{r}^2 + 22$

$$\Rightarrow \pi \mathbf{r}^2 + \pi + 2\pi \mathbf{r} = \pi \mathbf{r}^2 + 22$$

$$\Rightarrow \pi + 2\pi \mathbf{r} = 22$$
 [cancel $\pi \mathbf{r}^2$ from both the sides of the equation]

$$\Rightarrow \pi(1+2\mathbf{r}) = 22$$

$$\Rightarrow (1+2r) = \frac{22}{7} = (\frac{22 \times 7}{22}) = 7$$

$$\Rightarrow 2r = 7 - 1 = 6$$

$$\therefore r = \left(\frac{6}{2}\right) \text{ cm} = 3 \text{ cm}$$

: Original radius of the circle = 3 cm

O32

Answer:

(c) 1000

Radius of the wheel = 1.75 m

Circumference of the wheel = $2\pi r$

=
$$\left(2 \times \frac{22}{7} \times 1.75\right)$$
cm = $(2 \times 22 \times 0.25)$ m = 11 m

Distance covered by the wheel in 1 revolution is 11 m.

Now, 11 m is covered by the car in 1 revolution.

(11 × 1000) m will be covered by the car in $\left(1 \times \frac{1}{11} \times 11 \times 1000\right)$ revolutions, i.e. 1000 revolutions.

∴ Required number of revolutions = 1000