1. Rational Numbers

Exercise 1A

1. Question

Express $\frac{-3}{-}$ as a rational number with denominator

(i) 20 (ii) -30 (iii) 35 (iv) -40

Answer

For a fraction, $\frac{a}{b}$

 $\frac{a}{b} = \frac{a \times n}{b \times n}$

Where, $n \neq 0$

(i) We have to express $\frac{-3}{5}$ as a rational number with denominator 20. com

In order to make the denominator 20, multiply 5 by 4.

Therefore,

 $\frac{-3}{5} = \frac{-3 \times 4}{5 \times 4}$ $\Rightarrow \frac{-3}{5} = \frac{-12}{20}$

(ii) We have to express $\frac{-3}{5}$ as a rational number with denominator -30.

In order to make the denominator -30, multiply 5 by -6.

Therefore,

 $\frac{-3}{5} = \frac{-3 \times -6}{5 \times -6}$ $\Rightarrow \frac{-3}{5} = \frac{18}{-30}$

(iii) We have to express $\frac{-3}{5}$ as a rational number with denominator 35.

In order to make the denominator 35, multiply 5 by 7.

Therefore,

 $\frac{-3}{5} = \frac{-3 \times 7}{5 \times 7}$ $\Rightarrow \frac{-3}{5} = \frac{-21}{35}$

(iv) We have to express $\frac{-3}{5}$ as a rational number with denominator -40.

In order to make the denominator 20, multiply 5 by -8.

Therefore,

 $\frac{-3}{5} = \frac{-3 \times -8}{5 \times -8}$

$$\Rightarrow \frac{-3}{5} = \frac{24}{-40}$$

2. Question

Express $\frac{-42}{98}$ as a rational number with denominator 7.

Answer

For a fraction, $\frac{a}{b}$

$$\frac{a}{b} = \frac{a \div n}{b \div n}$$

Where, $n \neq 0$ and n divides both a and b

(i) We have to express $\frac{-42}{98}$ as a rational number with denominator 7.

In order to make the denominator 7, divide 98 by 14.

Therefore,

$$\frac{-42}{98} = \frac{-42 \div 14}{98 \div 14}$$
$$\Rightarrow \frac{-42}{98} = \frac{-3}{7}$$

3. Question

Express $\frac{-48}{60}$ as a rational number with denominator 5.

Answer

For a fraction, $\frac{a}{b}$

$$\frac{a}{b} = \frac{a \div n}{b \div n}$$

Where, $n \neq 0$ and n divides both a and b

We have to express $\frac{-48}{60}$ as a rational number with denominator 5.

In order to make the denominator 5, divide 60 by 12.

Therefore,

$$\frac{-48}{60} = \frac{-48 \div 12}{60 \div 12}$$
$$\Rightarrow \frac{-48}{60} = \frac{-4}{5}$$

4. Question

Express each of the following rational numbers in standard form:

(i)
$$\frac{-12}{30}$$
 (ii) $\frac{-14}{49}$ (iii) $\frac{24}{-64}$ (iv) $\frac{-36}{-63}$

Answer

A rational number is in standard or simplest or lowest form when-

1. Numerator and denominator have only 1 as its highest common factor.

2. Denominator is a positive integer.

(i) The HCF of 12 and 30 is 6

Therefore,

 $\frac{-12}{30} = \frac{-12 \div 6}{30 \div 6}$ $\Rightarrow \frac{-12}{30} = \frac{-2}{5}$

(ii) The HCF of 49 and 14 is 7

Therefore,

 $\frac{-14}{49} = \frac{-14 \div 7}{49 \div 7}$ $\Rightarrow \frac{-14}{49} = \frac{-2}{7}$

(iii) The HCF of 24 and 64 is 8

Therefore,

 $\frac{24}{-64} = \frac{24 \div 8}{-64 \div 8}$ $\Rightarrow \frac{24}{-64} = \frac{3}{-8}$

In order, to make the denominator positive, multiply both numerator and denominator by -1

con

 $\Rightarrow \frac{24}{-64} = \frac{3}{-8} = \frac{3 \times -1}{-8 \times -1}$ $\Rightarrow \frac{24}{-64} = \frac{-3}{-8}$

(iv) The HCF of 36 and 63 is 9

Therefore,

 $\frac{-36}{-63} = \frac{-36 \div 9}{-63 \div 9}$ $\Rightarrow \frac{-36}{-63} = \frac{-4}{-7}$

In order, to make the denominator positive, multiply both numerator and denominator by -1

$$\Rightarrow \frac{-36}{-63} = \frac{-4}{-7} = \frac{-4 \times -1}{-7 \times -1}$$
$$\Rightarrow \frac{-36}{-63} = \frac{4}{7}$$

5. Question

Which of the two rational numbers is greater in the given pair?

(i)
$$\frac{3}{8}$$
 or 0 (ii) $\frac{-2}{9}$ or 0 (iii) $\frac{-3}{4}$ or $\frac{1}{4}$

$$(iv) \frac{-5}{7} \text{ or } \frac{-4}{7} (v) \frac{2}{3} \text{ or } \frac{3}{4} (vi) \frac{-1}{2} \text{ or } -1$$

Answer

(i) $\frac{3}{8}$ is a positive number and all positive numbers are greater than 0.

Therefore, $\frac{3}{2} > 0$

(ii) $\frac{-2}{9}$ is a negative number and all negative numbers are less than 0.

Therefore, $0 > \frac{-2}{9}$

(iii) Both $\frac{-3}{4}$ and $\frac{1}{4}$ have the same denominator 4.

Therefore, we can directly compare both the numbers.

Since, 1 > -3

Therefore, $\frac{-3}{4} > \frac{1}{4}$

.12. (iv) Both $\frac{-5}{7}$ and $\frac{-4}{7}$ have the same denominator 7.

Therefore, we can directly compare both the numbers.

Since, -4 > -5

Therefore, $\frac{-4}{7} > \frac{-5}{7}$

(v) $\frac{2}{3}$ and $\frac{3}{4}$ have different denominators.

Therefore, we take LCM of 3 and 4 that is 12.

Now,

 $\frac{2}{3} = \frac{2 \times 4}{3 \times 4} = \frac{8}{12}$

And,

 $\frac{3}{4} = \frac{3 \times 3}{4 \times 3} = \frac{9}{12}$

Since, 9 > 8

Therefore, $\frac{9}{12} > \frac{8}{12}$

Hence, $\frac{2}{3} > \frac{3}{4}$

(vi) We can write $-1 = \frac{-1}{1}$

 $\frac{-1}{2}$ and $\frac{-1}{1}$ have different denominators.

Therefore, we take LCM of 1 and 2 that is 2.

Now,

$$\frac{-1}{2} = \frac{-1 \times 1}{2 \times 1} = \frac{-1}{2}$$

And,

$$\frac{-1}{1} = \frac{-1 \times 2}{1 \times 2} = \frac{-2}{2}$$

Since, -1 > -2
Therefore, $\frac{-1}{2} > \frac{-2}{2}$
Hence, $\frac{-1}{2} > -1$

6. Question

Which of the two rational numbers is greater in the given pair?

(i) $\frac{-4}{3}$ or $\frac{-8}{7}$ (ii) $\frac{7}{-9}$ or $\frac{-5}{8}$ (iii) $\frac{-1}{3}$ or $\frac{4}{-5}$ $(iv) \frac{9}{-13} \text{ or } \frac{7}{-12} (v) \frac{4}{-5} \text{ or } \frac{-7}{10} (vi) \frac{-12}{5} \text{ or } -3$

Answer

(i) $\frac{-4}{3}$ and $\frac{-8}{7}$ have different denominators.

Therefore, we take LCM of 3 and 7 that is 21.

Now,

-4	-4×7	-28
3 =	3 × 7	21

And,

 $\frac{-8}{7} = \frac{-8 \times 3}{7 \times 3} = \frac{-24}{21}$

Since, -24 > -28

Therefore, $\frac{-24}{21} > \frac{-28}{21}$

Hence,
$$\frac{-8}{7} > \frac{-4}{3}$$

(ii)

 $\frac{7}{-9} = \frac{7 \times -1}{-9 \times -1} = \frac{-7}{9}$

 $\frac{-7}{9}$ and $\frac{-5}{9}$ have different denominators.

Therefore, we take LCM of 9 and 8 that is 72.

Now,

 $\frac{-7}{9} = \frac{-7 \times 8}{9 \times 8} = \frac{-56}{72}$

And,

 $\frac{-5}{8} = \frac{-5 \times 9}{8 \times 9} = \frac{-45}{72}$ Since, -45 > -56

Therefore, $\frac{-45}{72} > \frac{-56}{72}$

Hence, $\frac{-5}{8} > \frac{-7}{9}$

(iii)

$$\frac{4}{-5} = \frac{4 \times -1}{-5 \times -1} = \frac{-4}{5}$$

 $\frac{-1}{3}$ and $\frac{-4}{5}$ have different denominators.

Therefore, we take LCM of 3 and 5 that is 15.

Now,

$\frac{-1}{3} = \frac{-1 \times 5}{3 \times 5} = \frac{-5}{15}$
And,
$\frac{-4}{5} = \frac{-4 \times 3}{5 \times 3} = \frac{-12}{15}$
Since, -5 > -12
Therefore, $\frac{-5}{15} > \frac{-12}{15}$
Hence, $\frac{-1}{3} > \frac{-4}{5}$
(iv)
$\frac{9}{-13} = \frac{9 \times -1}{-13 \times -1} = \frac{-9}{13}$
And,
$\frac{7}{-12} = \frac{7 \times -1}{-12 \times -1} = \frac{-7}{12}$
$\frac{-9}{13}$ and $\frac{-7}{12}$ have different denominators.
Therefore, we take LCM of 13 and 12 th
Now,
$\frac{-9}{13} = \frac{-9 \times 12}{13 \times 12} = \frac{-108}{156}$
And,
$\frac{-7}{12} = \frac{-7 \times 13}{12 \times 13} = \frac{-91}{156}$
Since, -91 > -108
Therefore, $\frac{-91}{156} > \frac{-108}{156}$
Hence, $\frac{-7}{12} > \frac{-9}{13}$
(v)
$\frac{4}{-5} = \frac{4 \times -1}{-5 \times -1} = \frac{-4}{5}$
$\frac{-7}{10}$ and $\frac{-4}{5}$ have different denominators.

that is 156.

Therefore, we take LCM of 10 and 5 that is 10.

Now,

 $\frac{-7}{10} = \frac{-7 \times 1}{10 \times 1} = \frac{-7}{10}$ And, $\frac{-4}{5} = \frac{-4 \times 2}{5 \times 2} = \frac{-8}{10}$ Since, -7 > -8 Therefore, $\frac{-7}{10} > \frac{-8}{10}$ Hence, $\frac{-7}{10} > \frac{-4}{5}$ (vi) We can write $-3 = \frac{-3}{1}$ $\frac{-3}{1}$ and $\frac{-12}{5}$ have different denominators. Therefore, we take LCM of 1 and 5 that is 5. Now, $\frac{-12}{5} = \frac{-12 \times 1}{5 \times 1} = \frac{-12}{5}$ And, $\frac{-3}{1} = \frac{-3 \times 5}{1 \times 5} = \frac{-15}{5}$ Since, -12 > -15 Therefore, $\frac{-12}{5} > \frac{-15}{5}$ Hence, $\frac{-12}{5} > -3$ 7. Question

Fill in the blanks with the correct symbol out of >, = and <:

(i)
$$\frac{6}{-13} \dots \frac{6}{-13}$$
 (ii) $\frac{5}{-13} \dots \frac{-35}{91}$ (iii) $-2 \dots \frac{-13}{5}$
(iv) $\frac{-2}{3} \dots \frac{5}{-8}$ (v) $0 \dots \frac{-3}{-5}$ (vi) $\frac{-8}{9} \dots \frac{-9}{10}$

Answer

(i) Clearly,

 $\frac{\frac{6}{-13} = \frac{6}{-13}}{(ii)}$ $\frac{\frac{5}{-13} = \frac{5 \times -1}{-13 \times -1} = \frac{-5}{13}}{\frac{5}{13}}$

 $\frac{-5}{13}$ and $\frac{-35}{91}$ have different denominators.

Therefore, we take LCM of 13 and 91 that is 91.

Now,

 $\frac{-5}{13} = \frac{-5 \times 7}{13 \times 7} = \frac{-35}{91}$ And, $\frac{-35}{91} = \frac{-35 \times 1}{91 \times 1} = \frac{-35}{91}$ Clearly, $\frac{-35}{91} = \frac{-35}{91}$ Hence, $\frac{5}{-13} = \frac{-35}{91}$ (iii) We can write $-2 = \frac{-2}{1}$ $\frac{-2}{1}$ and $\frac{-13}{5}$ have different denominators. Therefore, we take LCM of 1 and 5 that is 5. Now, $\frac{-2}{1} = \frac{-2 \times 5}{1 \times 5} = \frac{-10}{5}$ And, $\frac{-13}{5} = \frac{-13 \times 1}{5 \times 1} = \frac{-13}{5}$ Since, -10 > -13 Therefore, $\frac{-10}{5} > \frac{-13}{5}$ Hence, $-2 > \frac{-13}{5}$ $(iv)\frac{5}{-8} = \frac{5 \times -1}{-8 \times -1} = \frac{-5}{8}$ $\frac{-2}{3}$ and $\frac{-5}{8}$ have different denominators. Therefore, we take LCM of 3 and 8 that is 24. Now, $\frac{-2}{3} = \frac{-2 \times 8}{3 \times 8} = \frac{-16}{24}$ And. $\frac{-5}{8} = \frac{-5 \times 3}{8 \times 3} = \frac{-15}{24}$ Since, -16 < -15

Therefore, $\frac{-16}{24} < \frac{-15}{24}$

nominators. and 5 that is 5. Hence, $\frac{-2}{3} < \frac{-5}{8}$

(v)

 $\frac{-3}{-5} = \frac{-3 \times -1}{-5 \times -1} = \frac{3}{5}$

 $\frac{3}{5}$ is a positive number and all positive numbers are greater than 0.

Therefore, $0 < \frac{3}{5}$

Hence, $0 < \frac{-3}{-5}$

(vi) $\frac{-8}{9}$ and $\frac{-9}{10}$ have different denominators.

Therefore, we take LCM of 9 and 10 that is 90.

Now,

$\frac{-8}{9} = \frac{-8 \times 10}{9 \times 10} = \frac{-80}{90}$	
And,	
$\frac{-9}{10} = \frac{-9 \times 9}{10 \times 9} = \frac{-81}{90}$	
Since, -80 > -81	
Therefore, $\frac{-80}{90} > \frac{-81}{90}$	
Hence, $\frac{-8}{9} > \frac{-9}{10}$	
9 Ouestien	

8. Question

Arrange the following rational numbers in ascending order:

(i)
$$\frac{4}{-9}, \frac{-5}{12}, \frac{7}{-18}, \frac{-2}{3}$$
 (ii) $\frac{-3}{4}, \frac{5}{-12}, \frac{-7}{16}, \frac{9}{-24}$
(iii) $\frac{3}{-5}, \frac{-7}{10}, \frac{-11}{15}, \frac{-13}{20}$ (iv) $\frac{-4}{7}, \frac{-9}{14}, \frac{13}{-28}, \frac{-23}{42}$

Answer

(i)

$$\frac{4}{-9} = \frac{4 \times -1}{-9 \times -1} = \frac{-4}{9}$$

And,

 $\frac{7}{-18} = \frac{7 \times -1}{-18 \times -1} = \frac{-7}{18}$

Since, the denominators of all the numbers are different therefore we will take LCM of the denominators.

LCM of 9, 12, 18 and 3 = 36

 $\frac{-4}{9} = \frac{-4 \times 4}{9 \times 4} = \frac{-16}{36}$

 $\frac{-5}{12} = \frac{-5 \times 3}{12 \times 3} = \frac{-15}{36}$ $\frac{-7}{18} = \frac{-7 \times 2}{18 \times 2} = \frac{-14}{36}$ $\frac{-2}{3} = \frac{-2 \times 12}{3 \times 12} = \frac{-24}{36}$ Clearly, -24 < -16 < -15 < -14 Therefore, $\frac{-24}{36} < \frac{-16}{36} < \frac{-15}{36} < \frac{-14}{36}$ Hence. $\frac{-2}{3} < \frac{4}{-9} < \frac{-5}{12} < \frac{7}{-18}$ (ii) $\frac{5}{-12} = \frac{5 \times -1}{-12 \times -1} = \frac{-5}{12}$ And, $\frac{9}{-24} = \frac{9 \times -1}{-24 \times -1} = \frac{-9}{24}$ Since, the denominators of all the numbers are different therefore we will take LCM of the denominators. LCM of 4, 12, 16 and 24 = 48 $\frac{-3}{4} = \frac{-3 \times 12}{4 \times 12} = \frac{-36}{48}$ $\frac{-5}{12} = \frac{-5 \times 4}{12 \times 4} = \frac{-20}{48}$

com

June 1.

 $\frac{-7}{16} = \frac{-7 \times 3}{16 \times 3} = \frac{-21}{48}$ $\frac{-9}{24} = \frac{-9 \times 2}{24 \times 2} = \frac{-18}{48}$

Clearly,

-36 < -21 < -20 < -18

Therefore,

 $\frac{-36}{48} < \frac{-21}{48} < \frac{-20}{48} < \frac{-18}{48}$

Hence,

 $\frac{-3}{4} < \frac{-7}{16} < \frac{5}{-12} < \frac{-9}{24}$ (iii) $\frac{3}{-5} = \frac{3 \times -1}{-5 \times -1} = \frac{-3}{5}$

Since, the denominators of all the numbers are different therefore we will take LCM of the denominators.

com

LCM of 5, 10, 15 and 20 = 60

 $\frac{-3}{5} = \frac{-3 \times 12}{5 \times 12} = \frac{-36}{60}$ $\frac{-7}{10} = \frac{-7 \times 6}{10 \times 6} = \frac{-42}{60}$ $\frac{-11}{15} = \frac{-11 \times 4}{15 \times 4} = \frac{-44}{60}$ $\frac{-13}{20} = \frac{-13 \times 3}{20 \times 3} = \frac{-39}{60}$ Clearly, -44 < -42 < -39 < -36 Therefore, $\frac{-44}{60} < \frac{-42}{60} < \frac{-39}{60} < \frac{-36}{60}$ Hence, $\frac{-11}{15} < \frac{-7}{10} < \frac{-13}{20} < \frac{3}{-5}$ (iv) $\frac{13}{-28} = \frac{13 \times -1}{-28 \times -1} = \frac{-13}{28}$ Since, the denominators of all the numbers are different therefore we will take LCM of the denominators. LCM of 7, 14, 28 and 42 = 84 $\frac{-4}{7} = \frac{-4 \times 12}{7 \times 12} = \frac{-48}{84}$ $\frac{-9}{14} = \frac{-9 \times 6}{14 \times 6} = \frac{-54}{84}$ $\frac{-13}{28} = \frac{-13 \times 3}{28 \times 3} = \frac{-39}{84}$ $\frac{-23}{42} = \frac{-23 \times 2}{42 \times 2} = \frac{-46}{84}$ Clearly, -54 < -48 < -46 < -39

Therefore,

 $\frac{-54}{84} < \frac{-48}{84} < \frac{-46}{84} < \frac{-39}{84}$

Hence,

 $\frac{-9}{14} < \frac{-4}{7} < \frac{-23}{42} < \frac{13}{-28}$

9. Question

Arrange the following rational numbers in descending order:

Jiffer

(i)
$$-2, \frac{-13}{6}, \frac{8}{-3}, \frac{1}{3}$$
 (ii) $\frac{-3}{10}, \frac{7}{-15}, \frac{-11}{20}, \frac{17}{-30}$
(iii) $\frac{-5}{6}, \frac{-7}{12}, \frac{-13}{18}, \frac{23}{-24}$ (iv) $\frac{-10}{11}, \frac{-19}{22}, \frac{-23}{33}, \frac{-39}{44}$

Answer

(i)

$$-2 = \frac{-2}{1}$$

And,

$$\frac{8}{-3} = \frac{8 \times -1}{-3 \times -1} = \frac{-8}{3}$$

Since, the denominators of all the numbers are different therefore we will take LCM of the denominators.

LCM of 1, 6and 3 = 6 $\frac{-2}{1} = \frac{-2 \times 6}{1 \times 6} = \frac{-12}{6}$ $\frac{-13}{6} = \frac{-13 \times 1}{6 \times 1} = \frac{-13}{6}$ $\frac{-8}{3} = \frac{-8 \times 2}{3 \times 2} = \frac{-16}{6}$ $\frac{1}{3} = \frac{1 \times 2}{3 \times 2} = \frac{2}{6}$ Clearly, 2 > -12 > -13 > -16 Therefore, $\frac{2}{6} > \frac{-12}{6} > \frac{-13}{6} > \frac{-16}{6}$ Hence. $\frac{1}{3} > \frac{-2}{1} > \frac{-13}{6} > \frac{-8}{3}$ (ii) $\frac{7}{-15} = \frac{7 \times -1}{-15 \times -1} = \frac{-7}{15}$ And, $\frac{17}{-30} = \frac{17 \times -1}{-30 \times -1} = \frac{-17}{30}$

Since, the denominators of all the numbers are different therefore we will take LCM of the denominators.

LCM of 10, 15, 20 and 30 = 60

 $\frac{-3}{10} = \frac{-3 \times 6}{10 \times 6} = \frac{-18}{60}$

$\frac{-7}{15} = \frac{-7 \times 4}{15 \times 4} = \frac{-28}{60}$
$\frac{-11}{20} = \frac{-11 \times 3}{20 \times 3} = \frac{-33}{60}$
$\frac{-17}{30} = \frac{-17 \times 2}{30 \times 2} = \frac{-34}{60}$
Clearly,
-18>-28>-33>-34
Therefore,
$\frac{-18}{60} > \frac{-28}{60} > \frac{-33}{60} > \frac{-34}{60}$
Hence,
$\frac{-3}{10} > \frac{-7}{15} > \frac{-11}{20} > \frac{-17}{30}$
(iii)
$\frac{23}{-24} = \frac{23 \times -1}{-24 \times -1} = \frac{-23}{24}$
Since, the denominators of all the numbers are different therefore we will take LCM of the denominators.
LCM of 6, 12, 18 and 24 = 72
$\frac{-5}{-5} = \frac{-5 \times 12}{-60}$

6	6 x 12	72
$\frac{-7}{12} =$	$\frac{-7 \times 6}{12 \times 6} = \frac{1}{2}$	-42 72
<u>-13</u> 18	$=\frac{-13\times4}{18\times4}$	$=\frac{-52}{72}$
<u>-23</u> 24	$=\frac{-23\times3}{24\times3}$	$=\frac{-69}{72}$

Clearly,

-42>-52>-60>-69

Therefore,

 $\frac{-42}{72} > \frac{-52}{72} > \frac{-60}{72} > \frac{-69}{72}$

Hence,

 $\frac{-7}{12} > \frac{-13}{18} > \frac{-5}{6} > \frac{-23}{24}$

(iv)

Since, the denominators of all the numbers are different therefore we will take LCM of the denominators.

LCM of 11, 22, 33 and 44 = 132

 $\frac{-10}{11} = \frac{-10 \times 12}{11 \times 12} = \frac{-120}{132}$

 $\frac{-19}{22} = \frac{-19 \times 6}{22 \times 6} = \frac{-114}{132}$ $\frac{-23}{33} = \frac{-23 \times 4}{33 \times 4} = \frac{-92}{132}$ $\frac{-39}{44} = \frac{-39 \times 3}{44 \times 3} = \frac{-117}{132}$ Clearly, -92>-114>-117>-120 Therefore, $\frac{-92}{132} > \frac{-114}{132} > \frac{-117}{132} > \frac{-120}{132}$

Hence,

 $\frac{-23}{33} > \frac{-19}{22} > \frac{-39}{44} > \frac{-10}{11}$

10. Question

2.010 Which of the following statements are true and which are false?

(i) Every whole number is a rational number.

(ii) Every integer is a rational number.

(iii) 0 is a whole number but it is not a rational number.

Answer

(i) Every whole number a can be represented as $\frac{a}{1}$

Therefore, every whole number is a rational number.

(ii) Every integer a can be represented as

Therefore, every integer is a rational number.

(iii) 0 can be represented as

Therefore, 0 is a whole number and a rational number.

Exercise 1B

1. Question

Represent each of the following numbers on the number line:

(i)
$$\frac{1}{3}$$
 (ii) $\frac{2}{7}$ (iii) $1\frac{3}{4}$ (iv) $2\frac{2}{5}$

(v)
$$3\frac{1}{2}$$
 (vi) $5\frac{5}{7}$ (vii) $4\frac{2}{3}$ (viii) 8

Answer

(i) $\frac{1}{3}$ is greater than 0 and less than 1.

Therefore, it lies between 0 and 1

(ii) $\frac{2}{3}$ is greater than 0 and less than 1.

Therefore, it lies between 0 and 1

0 2/7 1 -1 -2 (iii) $1\frac{3}{4} = \frac{(4\times1)+3}{4} = \frac{4+3}{4} = \frac{7}{4}$ $\frac{7}{4}$ is greater than 1 and less than 2. Therefore, it lies between 1 and 2 1 -3 -2 -1 0 7/4 2 3 2.011 (iv) $2\frac{2}{5} = \frac{(5\times2)+2}{5} = \frac{10+2}{5} = \frac{12}{5}$ $\frac{12}{5}$ is greater than 2 and less than 3. Therefore, it lies between 2 and 3. -2 -1 -3 0 1 2 12/5 (v) $3\frac{1}{2} = \frac{(2\times3)+1}{2} = \frac{6+1}{2} = \frac{7}{2}$ $\frac{7}{2}$ is greater than 3 and less than 4. Therefore, it lies between 3 and 4. -5 -4 -3 -2 -1 1 7/2 4 (vi) $5\frac{5}{7} = \frac{(7\times5)+5}{7} = \frac{35+5}{7} = \frac{40}{7}$ $\frac{40}{7}$ is greater than 5 and less than 6. Therefore, it lies between 5 and 6. -1 0 1 2 3 4 5 40/76 -2 7 (vii) $4\frac{2}{3} = \frac{(3 \times 4) + 2}{3} = \frac{12 + 2}{3} = \frac{14}{3}$ $\frac{14}{2}$ is greater than 4 and less than 5. Therefore, it lies between 4 and 5. -2 -1 0 1 2 3 4 14/3 5 6

(viii) The number line representation of 8 is

2. Question

Represent each of the following numbers on the number line:

(i)
$$\frac{-1}{3}$$
 (ii) $\frac{-3}{4}$ (iii) $-1\frac{2}{3}$ (iv) $-3\frac{1}{7}$
(v) $-4\frac{3}{5}$ (vi) $-2\frac{5}{6}$ (vii) -3 (viii) $-2\frac{7}{8}$

Answer

(i) $\frac{-1}{3}$ is greater than -1 and less than 0.

Therefore, it lies between -1 and 0

 $\frac{-17}{6}$ is greater than -3 and less than -2.

Therefore, it lies between -3 and -2

(viii) $-2\frac{7}{8} = -\frac{(8\times 2)+7}{8} = -\frac{16+7}{8} = \frac{-23}{8}$

 $\frac{-23}{8}$ is greater than -3 and less than -2.

Therefore, it lies between -3 and -2

3. Question

2. COM Which of the following statements are true and which are false?

(i) $\frac{-3}{5}$ lies to the left of 0 on the number line.

(ii) $\frac{-12}{7}$ lies to the right of 0 on the number line.

(iii) The rational numbers $\frac{1}{3}$ and $\frac{-5}{2}$ are on opposite sides of 0 on the number line.

5

(iv) The rational number $\frac{-18}{12}$ lies to the left of 0 on the number line.

Answer

(i) True

 $\frac{-3}{5}$ is a negative number.

All negative numbers are less than 0 and therefore, lie to the left of 0 on the number line.

Hence, $\frac{-3}{5}$ lies to the left of 0 on the number line.

(iii) False

 $\frac{-12}{7}$ is a negative number.

All negative numbers are less than 0 and therefore, lie to the left of 0 on the number line.

Hence, $\frac{-12}{7}$ lies to the left of 0 on the number line.

(iii)True

 $\frac{1}{2}$ is a positive number.

All positive numbers are greater than 0 and therefore, lie to the right of 0 on the number line.

Hence, $\frac{1}{3}$ lies to the right of 0 on the number line.

 $\frac{-5}{2}$ is a negative number.

All negative numbers are less than 0 and therefore, lie to the left of 0 on the number line.

Hence, $\frac{-5}{2}$ lies to the left of 0 on the number line.

Therefore, the rational numbers, $\frac{1}{3}$ and $\frac{-5}{2}$ are on opposite sides of 0 on the number line.

(iv) False

 $\frac{-18}{-13} = \frac{-18 \times -1}{-13 \times -1} = \frac{18}{13}$

 $\frac{18}{13}$ is a positive number.

All positive numbers are greater than 0 and therefore, lie to the right of 0 on the number line.

Exercise 1C

1. Question

Hence, $\frac{18}{13}$ lies to the right of 0 on the number line.
Exercise 1C
1. Question
Add the following rational numbers:
(i) $\frac{-2}{5}$ and $\frac{4}{5}$ (ii) $\frac{-6}{11}$ and $\frac{-4}{11}$ (iii) $\frac{-11}{8}$ and $\frac{5}{8}$
(iv) $\frac{-7}{3}$ and $\frac{1}{3}$ (v) $\frac{5}{6}$ and $\frac{-1}{6}$ (vi) $\frac{-17}{15}$ and $\frac{-1}{15}$
Answer
(i) $\frac{-2}{5} + \frac{4}{5}$
$=\frac{-2+4}{5}$
$=\frac{2}{5}$
(ii) $\frac{-6}{11} + \frac{-4}{11}$
$=\frac{-6+(-4)}{11}$
$=\frac{-6-4}{11}$
$=\frac{-10}{11}$
(iii) $\frac{-11}{8} + \frac{5}{8}$
$=\frac{-11+5}{8}$

$$=\frac{-6}{8}$$

To convert it into lowest terms, divide both numerator and denominator by common divisor of both 6 and 8 that is, 2

$$= \frac{-6 \div 2}{8 \div 2}$$
$$= \frac{-3}{4}$$
$$(iv) \frac{-7}{3} + \frac{1}{3}$$
$$= \frac{-7 + 1}{3}$$
$$= \frac{-6}{3}$$

To convert it into lowest terms, divide both numerator and denominator by common divisor of both 6 and 3 that is, 3.

$=\frac{-6\div 3}{3\div 3}$	
$=\frac{-2}{1}$	
=2	
$(v) \frac{5}{6} + \frac{-1}{6}$	
$=\frac{5+(-1)}{6}$	
$=\frac{5-1}{6}$	
$=\frac{4}{6}$	

To convert it into lowest terms, divide both numerator and denominator by common divisor of both 4 and 6 that is, 2.

$$=\frac{4 \div 2}{6 \div 2}$$
$$=\frac{2}{3}$$
(vi) $\frac{-17}{15} + \frac{-1}{15}$
$$=\frac{-17 + (-1)}{15}$$
$$=\frac{-18}{15}$$

To convert it into lowest terms, divide both numerator and denominator by common divisor of both 18 and 15 that is, 3.

 $=\frac{-18\div 3}{15\div 3}$

$$=\frac{-6}{5}$$

2. Question

Add the following rational numbers:

Answer

(i) Since, the denominators of given rational numbers are different therefore, we take their LCM.

LCM of 4 and $5 = 20$	
$\frac{3}{4} = \frac{3 \times 5}{4 \times 5} = \frac{15}{20}$	
And	
$\frac{-3}{5} = \frac{-3 \times 4}{5 \times 4} = \frac{-12}{20}$	
Now,	
$\frac{3}{4} + \frac{-3}{5}$	
$=\frac{15}{20}+\frac{-12}{20}$	
$=\frac{15+(-12)}{20}$	
$=\frac{15-12}{20}$	
$=\frac{3}{20}$	

(ii) Since, the denominators of given rational numbers are different therefore, we take their LCM.

LCM of 8 and 12 = 24

 $\frac{5}{8} = \frac{5 \times 3}{8 \times 3} = \frac{15}{24}$

And

 $\frac{-7}{12} = \frac{-7 \times 2}{12 \times 2} = \frac{-14}{24}$

Now,

$$\frac{5}{8} + \frac{-7}{12}$$
$$= \frac{15}{24} + \frac{-14}{24}$$
$$= \frac{15 + (-14)}{24}$$
$$= \frac{15 - 14}{24}$$
$$= \frac{1}{24}$$

(iii) Since, the denominators of given rational numbers are different therefore, we take their LCM.

LCM of 9 and $6 = 18$
$\frac{-8}{9} = \frac{-8 \times 2}{9 \times 2} = \frac{-16}{18}$
And
$\frac{11}{6} = \frac{11 \times 3}{6 \times 3} = \frac{33}{18}$
Now,
$\frac{-8}{9} + \frac{11}{6}$
$=\frac{-16}{18}+\frac{33}{18}$
$=\frac{-16+33}{18}$
$=\frac{17}{18}$
(iv) Since, the denominators of given rational numbers are different therefore, we take their LCM.
LCM of 16 and 24 = 48
$\frac{-5}{16} = \frac{-5 \times 3}{16 \times 3} = \frac{-15}{48}$
And
$\frac{7}{24} = \frac{7 \times 2}{24 \times 2} = \frac{14}{48}$
Now,
$\frac{-5}{16} + \frac{7}{24}$
$=\frac{-15}{48}+\frac{14}{48}$
$=\frac{-15+14}{48}$
$=\frac{-1}{48}$

(v) Since, the denominators of given rational numbers are negative therefore, we will make them positive.

 $\frac{7}{-18} = \frac{7 \times -1}{-18 \times -1} = \frac{-7}{18}$

Now, since, the denominators of given rational numbers are different therefore, we take their LCM.

LCM of 18 and 27 = 54

$$\frac{-7}{18} = \frac{-7 \times 3}{18 \times 3} = \frac{-21}{54}$$

And

$$\frac{8}{27} = \frac{8 \times 2}{27 \times 2} = \frac{16}{54}$$

Now,

 $\frac{-7}{18} + \frac{8}{27}$ $= \frac{-21}{54} + \frac{16}{54}$ $= \frac{-21 + 16}{54}$ $= \frac{-5}{54}$

(vi) Since, the denominators of given rational numbers are negative therefore, we will make them positive.

$$\frac{1}{-12} = \frac{1 \times -1}{-12 \times -1} = \frac{-1}{12}$$

And,

 $\frac{2}{-15} = \frac{2 \times -1}{-15 \times -1} = \frac{-2}{15}$

Now, since, the denominators of given rational numbers are different therefore, we take their LCM.

LCM of 12 and 15 = 60

 $\frac{-1}{12} = \frac{-1 \times 5}{12 \times 5} = \frac{-5}{60}$

And

$$\frac{-2}{15} = \frac{-2 \times 4}{15 \times 4} = \frac{-8}{60}$$

Now,

$$\frac{\frac{-5}{60} + \frac{-8}{60}}{\frac{-5 + (-8)}{60}}$$
$$= \frac{\frac{-5 - 8}{60}}{\frac{-13}{60}}$$

(vii) We can write -1 as $\frac{-1}{1}$.

Now, since, the denominators of given rational numbers are different therefore, we take their LCM.

LCM of 1 and 4 = 4

$$\frac{-1}{1} = \frac{-1 \times 4}{1 \times 4} = \frac{-4}{4}$$

And

$$\frac{3}{4} = \frac{3 \times 1}{4 \times 1} = \frac{3}{4}$$

Now,

$$-1 + \frac{3}{4}$$
$$= \frac{-4 + 3}{4}$$
$$= \frac{-1}{4}$$

(viii) We can write 2 as $\frac{2}{1}$.

Now, since, the denominators of given rational numbers are different therefore, we take their LCM.

LCM of 1 and 4 = 4

2 2×4 8 $\overline{1} = \overline{1 \times 4} = \overline{4}$

And

$$\frac{-5}{4} = \frac{-5 \times 1}{4 \times 1} = \frac{-5}{4}$$

Now,

$$2 + \frac{-5}{4}$$

= $\frac{8 + (-5)}{4}$
= $\frac{8 - 5}{4}$
= $\frac{3}{4}$
(ix) $0 + \frac{-2}{5}$

On adding, any number to 0 we get the same number.

Therefore,

$$0 + \frac{-2}{5} = \frac{-2}{5}$$

3. Question

Verify the following:

(i) $\frac{-12}{5} + \frac{2}{7} = \frac{2}{7} + \frac{-12}{5}$ (ii) $\frac{-5}{8} + \frac{-9}{13} = \frac{-9}{13} + \frac{-5}{8}$ (iii) $3 + \frac{-7}{12} = \frac{-7}{12} + 3$ (iv) $\frac{2}{-7} + \frac{12}{-35} = \frac{12}{-35} + \frac{2}{-7}$ Answer (i) LCM of 5 and 7 = 35 $\frac{-12}{5} = \frac{-12 \times 7}{5 \times 7} = \frac{-84}{35}$ And. $\frac{2}{7} = \frac{2 \times 5}{7 \times 5} = \frac{10}{35}$ LHS = $\frac{-12}{5} + \frac{2}{7} = \frac{-84}{35} + \frac{10}{35} = \frac{-84 + 10}{35} = \frac{-74}{35}$ $5^{-} = \frac{12 \times 7}{5 \times 7} = \frac{-84}{35}$ RHS = $\frac{2}{7} + \frac{-12}{5} = \frac{10}{35} + \frac{-84}{35} = \frac{10 + (-84)}{35} = \frac{10 - 84}{35} = \frac{-74}{35}$ i.e., LHS = RHS
Hence, $\frac{-12}{5} + \frac{2}{7} = \frac{2}{7} + \frac{-12}{5}$ srified 1LCM of 13 and 8 = 10⁴ $= \frac{-5 \times 1^{-12}}{5}$ Similarly, $\frac{-5}{8} = \frac{-5 \times 13}{8 \times 13} = \frac{-65}{104}$ And, $\frac{-9}{13} = \frac{-9 \times 8}{13 \times 8} = \frac{-72}{104}$ LHS = $\frac{-5}{8} + \frac{-9}{13} = \frac{-65}{104} + \frac{-72}{104} = \frac{-65 + (-72)}{104} = \frac{-65 - 72}{104} = \frac{-137}{104}$ Similarly, LCM of 8 and 13 = 104 $\frac{-9}{13} = \frac{-9 \times 8}{13 \times 8} = \frac{-72}{104}$ And,

 $\frac{-5}{8} = \frac{-5 \times 13}{8 \times 13} = \frac{-65}{104}$ $RHS = \frac{-9}{13} + \frac{-5}{8} = \frac{-72}{104} + \frac{-65}{104} = \frac{-72 + (-65)}{35} = \frac{-72 - 65}{35} = \frac{-137}{104}$ i.e., LHS = RHSHence, $\frac{-5}{8} + \frac{-9}{13} = \frac{-9}{13} + \frac{-5}{8}$ Verified (iii) 3 can be written as $\frac{3}{1}$ LCM of 1 and 12 = 12 $\frac{3}{1} = \frac{3 \times 12}{1 \times 12} = \frac{36}{12}$ And, $\frac{-7}{12} = \frac{-7 \times 1}{12 \times 1} = \frac{-7}{12}$ LHS $=\frac{3}{1} + \frac{-7}{12} = \frac{36}{12} + \frac{-7}{12} = \frac{36 + (-7)}{12} = \frac{36 - 7}{12} = \frac{29}{12}$ Similarly, LCM of 1 and 12 = 12 $\frac{-7}{12} = \frac{-7 \times 1}{12 \times 1} = \frac{-7}{12}$ And, $\frac{3}{1} = \frac{3 \times 12}{1 \times 12} = \frac{36}{12}$ RHS = $\frac{-7}{12} + \frac{3}{1} = \frac{-7}{12} + \frac{36}{12} = \frac{-7 + 36}{12} = \frac{-7 + 36}{12}$ i.e., LHS = RHSHence,

 $3 + \frac{-7}{12} = \frac{-7}{12} + 3$

Verified

(iv) Since, the denominators are negative we will make them positive.

$$\frac{2}{-7} = \frac{2 \times -1}{-7 \times -1} = \frac{-2}{7}$$

And,

 $\frac{12}{-35} = \frac{12 \times -1}{= 35 \times -1} = \frac{-12}{35}$

LCM of 7 and 35 = 35

 $\frac{-2}{7} = \frac{-2 \times 5}{7 \times 5} = \frac{-10}{35}$

And,

$$\frac{-12}{35} = \frac{-12 \times 1}{35 \times 1} = \frac{-12}{35}$$
LHS $= \frac{-2}{7} + \frac{-12}{35} = \frac{-10}{35} + \frac{-12}{35} = \frac{-10 + (-12)}{35} = \frac{-10 - 12}{35} = \frac{-22}{35}$
Similarly,
LCM of 7 and 5 = 35
$$\frac{-12}{35} = \frac{-12 \times 1}{35 \times 1} = \frac{-12}{35}$$
And,
$$\frac{-2}{7} = \frac{-2 \times 5}{7 \times 5} = \frac{-10}{35}$$
RHS $= \frac{-12}{35} + \frac{-2}{7} = \frac{-12}{35} + \frac{-10}{35} = \frac{-12 + (-10)}{35} = \frac{-12 - 10}{35} = \frac{-22}{35}$
i.e., LHS = RHS
Hence,
$$\frac{-2}{7} + \frac{-12}{35} = \frac{-12}{35} + \frac{-2}{7}$$
Verified
4. Question
Verify the following:
(i) $\left(\frac{3}{4} + \frac{-2}{5}\right) + \frac{-13}{22} = \frac{-7}{11} + \left(\frac{2}{-5} + \frac{-7}{10}\right)$
(ii) $\left(-\frac{7}{11} + \frac{2}{-5}\right) + \frac{-13}{22} = \frac{-7}{11} + \left(\frac{2}{-5} + \frac{-13}{22}\right)$
(iii) $-1 + \left(\frac{-2}{3} + \frac{-3}{4}\right) = \left(-1 + \frac{2}{3}\right) + \frac{-3}{4}$

Answer

(i)

$$\left(\frac{3}{4} + \frac{-2}{5}\right) + \frac{-7}{10} = \frac{3}{4} + \left(\frac{-2}{5} + \frac{-7}{10}\right)$$

$$LHS = \left(\frac{3}{4} + \frac{-2}{5}\right) + \frac{-7}{10}$$

$$= \left(\frac{3 \times 5 + (-2) \times 4}{20}\right) + \frac{-7}{10}$$

$$= \left(\frac{15 - 8}{20}\right) + \frac{-7}{10}$$

$$= \frac{7}{20} + \frac{-7}{10}$$

$=\frac{7 \times 1 + (-7) \times 2}{20}$
$=\frac{7 \times 1 + (-7) \times 2}{20}$
$=\frac{7-14}{20}$
$=\frac{-7}{20}$
$RHS = \frac{3}{4} + \left(\frac{-2}{5} + \frac{-7}{10}\right)$
$=\frac{3}{4} + \left(\frac{(-2) \times 2 + (-7) \times 1}{10}\right)$
$=\frac{3}{4}+\left(\frac{-4-7}{10}\right)$
$=\frac{3}{4}+\frac{-11}{10}$
$=\frac{3\times5+(-11)\times2}{20}$
$=\frac{15-22}{20}$
$=\frac{-7}{20}$
RHS = LHS
Verified
(ii)
$\left(\frac{-7}{11} + \frac{2}{-5}\right) + \frac{-13}{22} = \frac{-7}{11} + \left(\frac{2}{-5} + \frac{-13}{22}\right)$
LHS = $\left(\frac{-7}{11} + \frac{2}{-5}\right) + \frac{-13}{22}$
$= \left(\frac{-7}{11} + \frac{-2}{5}\right) + \frac{-13}{22}$
$= \left(\frac{-7 \times 5 + (-2) \times 11}{55}\right) + \frac{-13}{22}$
$= \left(\frac{-35-22}{55}\right) + \frac{-13}{22}$
$=\frac{-57}{55}+\frac{-13}{22}$
$=\frac{-57 \times 2 + (-13) \times 5}{110}$
$=\frac{-114-65}{110}$
$=\frac{-179}{110}$

$$\begin{aligned} \text{RHS} &= \frac{-7}{11} + \left(\frac{2}{-5} + \frac{-13}{22}\right) \\ &= \frac{-7}{11} + \left(\frac{-2}{-5} + \frac{-13}{22}\right) \\ &= \frac{-7}{11} + \left(\frac{-44 - 65}{-110}\right) \\ &= \frac{-7}{11} + \left(\frac{-44 - 65}{-110}\right) \\ &= \frac{-7}{11} + \left(\frac{-109}{110}\right) \\ &= \frac{-7 \times 10 + (-109) \times 1}{110} \\ &= \frac{-70 - 109}{20} \\ &= \frac{-179}{20} \\ &= \frac{-179}{110} \\ \text{RHS} = \text{LHS} \\ \text{Verified} \\ \text{(iii)} \\ &= 1 + \left(\frac{-2}{3} + \frac{-3}{4}\right) = \left(-1 + \frac{-2}{3}\right) + \frac{-3}{4} \\ \text{LHS} &= -1 + \left(\frac{-2}{3} + \frac{-3}{4}\right) \\ &= \frac{-1}{1} + \left(\frac{-2}{3} + \frac{-3}{4}\right) \\ &= \frac{-1}{1} + \left(\frac{-2}{-3} + \frac{-3}{4}\right) \\ &= \frac{-1}{1} + \left(\frac{-2 \times 4 + (-3) \times 3}{12}\right) \\ &= \frac{-1}{1} + \left(\frac{-8 - 9}{12}\right) \\ &= \frac{-1}{12} + \frac{(-17) \times 1}{12} \\ &= \frac{-12 - 17}{12} \\ &= \frac{-12 - 17}{12} \\ &= \frac{-12}{29} \\ \text{RHS} = \left(-1 + \frac{-2}{3}\right) + \frac{-3}{4} \\ &= \left(\frac{-1 \times 3 + (-2) \times 1}{3}\right) + \frac{-3}{4} \end{aligned}$$

$$= \left(\frac{-3-2}{3}\right) + \frac{-3}{4}$$
$$= \frac{-5}{3} + \frac{-3}{4}$$
$$= \frac{-5 \times 4 + (-3) \times 3}{12}$$
$$= \frac{-20-9}{20}$$
$$= \frac{-29}{12}$$
RHS = LHS

Verified

5. Question

Fill in the blanks:

$$(i)\left(\frac{-3}{17}\right) + \left(\frac{-12}{5}\right) = \left(\frac{-12}{5}\right) + (....)$$

$$(ii) -9 + \frac{-21}{8} = (....) + (-9)$$

$$(iii)\left(\frac{-8}{13} + \frac{3}{7}\right) + \left(\frac{-13}{4}\right) = (....) + \left[\frac{3}{7} + \left(\frac{-13}{4}\right)\right]$$

$$(iv) -12 + \left(\frac{7}{12} + \frac{-9}{11}\right) = \left(-12 + \frac{7}{12}\right) + (....)$$

$$(v) \frac{19}{-5} + \left(\frac{-3}{11} + \frac{-7}{8}\right) = \left\{\frac{19}{-5} + (....)\right\} + \frac{-7}{8}$$

$$(vi) \frac{-16}{7} + = + \frac{-16}{7} = \frac{-16}{7}$$

Answer

(i)
$$\frac{-3}{17}$$

By Commutative property, i.e., a+b=b+a

Therefore,

$$\frac{-3}{17} + \frac{-12}{5} = \frac{-12}{5} + \frac{-3}{17}$$
(ii) $\frac{-21}{8}$

By Commutative property, i.e., a+b=b+a

Therefore,

$$-9 + \frac{-21}{8} = \frac{-21}{8} + (-9)$$

(iii) $\frac{-8}{13}$

By Associative property, i.e., (a+b)+c=a+(b+c)

Therefore,

$$\begin{pmatrix} -8\\13 + \frac{3}{7} \end{pmatrix} + \begin{pmatrix} -13\\4 \end{pmatrix} = \begin{pmatrix} -8\\13 \end{pmatrix} + \begin{bmatrix} 3\\7 + \begin{pmatrix} -13\\4 \end{bmatrix} \end{bmatrix}$$

(iv) $\frac{-9}{11}$

By Associative property, i.e., (a+b)+c=a+(b+c)

Therefore,

$$-12 + \left(\frac{7}{12} + \frac{-9}{11}\right) = \left(-12 + \frac{7}{12}\right) + \left(\frac{-9}{11}\right)$$

(v) $\frac{-3}{11}$

By Associative property, i.e., (a+b)+c=a+(b+c)

Therefore,

$$\frac{19}{-5} + \left(\frac{-3}{11} + \frac{-7}{8}\right) = \left(\frac{19}{-5} + \frac{-3}{11}\right) + \left(\frac{-7}{8}\right)$$

(vi) 0,0

0 is the additive identity that is, if we add 0 to any number the result will be the number itself.

a+0=0+a

Also, By Commutative property, i.e., a+b=b+a

We get,

 $\frac{-16}{7} + 0 = 0 + \frac{-16}{7} = \frac{-16}{7}$

6. Question

Find the additive inverse of each of the following:

(i)
$$\frac{1}{3}$$
 (ii) $\frac{23}{9}$ (iii) -18 (iv) $\frac{-17}{8}$ (v) $\frac{15}{-4}$
(vi) $\frac{-16}{-5}$ (vii) $\frac{-3}{11}$ (viii) 0 (ix) $\frac{19}{-6}$ (x) $\frac{-8}{-7}$

Answer

Additive inverse of a number $\frac{a}{b}$ is the number $-\frac{a}{b}$ such that, $\frac{a}{b} + \left(\frac{-a}{b}\right) = 0$

Therefore,

(i) Additive inverse of $\frac{1}{3}$ is $\frac{-1}{3}$ (ii) Additive inverse of $\frac{23}{9}$ is $\frac{-23}{9}$ (iii) Additive inverse of -18 is 18 (iv) Additive inverse of $\frac{-17}{g}$ is $\frac{17}{g}$ (v) $\frac{15}{-4} = \frac{15 \times -1}{-4 \times -1} = \frac{-15}{4}$ Therefore, Additive inverse of $\frac{-15}{4}$ is $\frac{15}{4}$ (vi) $\frac{-16}{-5} = \frac{-16 \times -1}{-5 \times -1} = \frac{16}{5}$ Additive inverse of $\frac{16}{5}$ is $\frac{-16}{5}$ (vii) Additive inverse of $\frac{-3}{11}$ is $\frac{3}{11}$ (viii) Additive inverse of 0 is 0 (ix) $\frac{19}{-6} = \frac{19 \times -1}{-6 \times -1} = \frac{-19}{6}$ Therefore, Additive inverse of $\frac{-19}{6}$ is $\frac{19}{6}$ (x) $\frac{-8}{-7} = \frac{-8 \times -1}{-7 \times -1} = \frac{8}{7}$ Additive inverse of $\frac{8}{7}$ is $\frac{-8}{7}$ 7. Question Subtract: (i) $\frac{3}{4}$ from $\frac{1}{3}$ (ii) $\frac{-5}{6}$ from $\frac{1}{3}$ (iii) $\frac{-8}{-1}$ from $\frac{-3}{-1}$ (iv) $\frac{-9}{-1}$ from -1

(v)
$$\frac{-18}{11}$$
 from 1 (vi) $\frac{-13}{9}$ from 0

(vii)
$$\frac{-32}{13}$$
 from $\frac{-6}{5}$ (viii) -7 from $\frac{-4}{7}$

Answer

Since the denominators of both the numbers are different therefore, we will take their LCM

LCM 0f 3 and 4 = 12

 $\frac{3}{4} = \frac{3 \times 3}{4 \times 3} = \frac{9}{12}$

And,

 $\frac{1}{3} = \frac{1 \times 4}{3 \times 4} = \frac{4}{12}$

Therefore,

 $\frac{1}{3} - \frac{3}{4}$ $=\frac{4}{12}-\frac{9}{12}$ $=\frac{4-9}{12}$ $=\frac{-5}{12}$

(ii)

Since the denominators of both the numbers are different therefore, we will take their LCM

LCM Of 6 and 3 = 6

-5	-5×1	-5
6	6×1	= <u>6</u>

And,

$$\frac{1}{3} = \frac{1 \times 2}{3 \times 2} = \frac{2}{6}$$

Therefore,

$$\frac{1}{3} - \left(\frac{-5}{6}\right)$$

$$=\frac{2}{6} - \left(\frac{-5}{6}\right)$$
$$=\frac{2 - (-5)}{6}$$
$$=\frac{2 + 5}{6}$$

 $=\frac{7}{6}$

(iii)

Since the denominators of both the numbers are different therefore, we will take their LCM

LCM 0f 9 and 5 = 45

$$\frac{-8}{9} = \frac{-8 \times 5}{9 \times 5} = \frac{-40}{45}$$

And,

 $\frac{-3}{5} = \frac{-3 \times 9}{5 \times 9} = \frac{-27}{45}$ Therefore, $\frac{-3}{5} - \left(\frac{-8}{9}\right)$ $=\frac{-27}{45}-\left(\frac{-40}{45}\right)$ $=\frac{-27-(-40)}{45}$ $=\frac{-27+40}{45}$ $=\frac{13}{45}$ (iv) We can write, $-1 = \frac{-1}{1}$.re will Since the denominators of both the numbers are different therefore, we will take their LCM LCM Of 1 and 7 = 7 $\frac{-1}{1} = \frac{-1 \times 7}{1 \times 7} = \frac{-7}{7}$ And, $\frac{-9}{7} = \frac{-9 \times 1}{7 \times 1} = \frac{-9}{7}$ Therefore, $-1 - \left(\frac{-9}{7}\right)$ $=\frac{-7}{7}-\left(\frac{-9}{7}\right)$ $=\frac{-7-(-9)}{7}$ $=\frac{-7+9}{7}$ $=\frac{2}{7}$

(v)

We can write, $1 = \frac{1}{1}$

Since the denominators of both the numbers are different therefore, we will take their LCM

LCM Of 1 and 11 = 11

 $\frac{1}{1} = \frac{1 \times 11}{1 \times 11} = \frac{11}{11}$

And,

-18 -18 × 1 -18
$\frac{10}{11} = \frac{10001}{11 \times 1} = \frac{10}{11}$
Therefore,
$1 - \left(\frac{-18}{11}\right)$
$=\frac{11}{11}-\left(\frac{-18}{11}\right)$
$=\frac{11-(-18)}{11}$
$=\frac{11+18}{11}$
$=\frac{29}{11}$
(vi)
$0 - \left(\frac{-13}{9}\right)$
$=0+\frac{13}{9}$
$=\frac{13}{9}$
(vii)
Since the denominators of both the numbers are different therefore, we will take their LCM
LCM 0f 13 and 5 = 65
$\frac{-6}{5} = \frac{-6 \times 13}{5 \times 13} = \frac{-78}{65}$
And,
$\frac{-32}{13} = \frac{-32 \times 5}{13 \times 5} = \frac{-160}{65}$
Therefore,
$\frac{-6}{5} - \left(\frac{-32}{13}\right)$
$=\frac{-78}{65} - \left(\frac{-160}{65}\right)$
$=\frac{-78-(-160)}{65}$

 $=\frac{-78+160}{65}$

 $=\frac{82}{65}$

(viii)

We can write, $-7 = \frac{-7}{1}$

Since the denominators of both the numbers are different therefore, we will take their LCM

LCM Of 1 and 7 = 7

$$\frac{-7}{1} = \frac{-7 \times 7}{1 \times 7} = \frac{-49}{7}$$

And,

$$\frac{-4}{7} = \frac{-4 \times 1}{7 \times 1} = \frac{-4}{7}$$

Therefore,

$$= \frac{-4}{7} - (-7)$$
$$= \frac{-4}{7} - \left(\frac{-49}{7}\right)$$
$$= \frac{-4 - (-49)}{7}$$
$$= \frac{-4 + 49}{7}$$
$$= \frac{45}{7}$$

8. Question

Using the rearrangement property find the sum:

$$=\frac{45}{7}$$
8. Question
Using the rearrangement property find the sum:
(i) $\frac{4}{3} + \frac{3}{5} + \frac{-2}{3} + \frac{-11}{5}$
(ii) $\frac{-8}{3} + \frac{-1}{4} + \frac{-11}{6} + \frac{3}{8}$
(iii) $\frac{-13}{20} + \frac{11}{14} + \frac{-5}{7} + \frac{3}{10}$
(iv) $\frac{-6}{7} + \frac{-5}{6} + \frac{-4}{9} + \frac{-15}{7}$

Answer

Rearrangement property says that, the numbers in an addition expression may be arranged and grouped in any order.

Therefore,

$$(\mathsf{i})\frac{4}{3} + \frac{3}{5} + \frac{-2}{3} + \frac{-11}{5}$$

We arrange the numbers with same denominators together,

$$= \left(\frac{4}{3} + \frac{-2}{3}\right) + \left(\frac{3}{5} + \frac{-11}{5}\right)$$
$$= \left(\frac{4 + (-2)}{3}\right) + \left(\frac{3 + (-11)}{5}\right)$$
$$= \left(\frac{2}{3}\right) + \left(\frac{-8}{5}\right)$$

Now, we take LCM of 3 and 5=15

 $\frac{2}{3} = \frac{2 \times 5}{3 \times 5} = \frac{10}{15}$

And,

 $\frac{-8}{5} = \frac{-8 \times 3}{5 \times 3} = \frac{-24}{15}$

Therefore,

$$\begin{pmatrix} \frac{2}{3} \end{pmatrix} + \begin{pmatrix} -\frac{8}{5} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{10}{15} \end{pmatrix} + \begin{pmatrix} -\frac{24}{15} \end{pmatrix}$$

$$= \frac{10 + (-24)}{15}$$

$$= \frac{10 - 24}{15}$$

$$= \frac{-14}{15}$$

$$\frac{-8}{3} + \frac{-1}{4} + \frac{-11}{6} + \frac{3}{8}$$

We arrange the numbers,

$$= \left(\frac{-8}{3} + \frac{-11}{6}\right) + \left(\frac{-1}{4} + \frac{3}{8}\right)$$

LCM of 3 and 6 = 6

 $\frac{-8}{3} = \frac{-8 \times 2}{3 \times 2} = \frac{-16}{6}$

And,

 $\frac{-11}{6} = \frac{-11 \times 1}{6 \times 1} = \frac{-11}{6}$

LCM of 4 and 8 = 8

 $\frac{-1}{4} = \frac{-1 \times 2}{4 \times 2} = \frac{-2}{8}$

And,

$$\frac{3}{8} = \frac{3 \times 1}{8 \times 1} = \frac{3}{8}$$

Now,

$$\left(\frac{-16}{6} + \frac{-11}{6}\right) + \left(\frac{-2}{8} + \frac{3}{8}\right)$$
$$= \left(\frac{-16 + (-11)}{6}\right) + \left(\frac{-2 + 3}{8}\right)$$
$$= \left(\frac{-27}{6}\right) + \left(\frac{1}{8}\right)$$
Now, we take LCM of 6 and 8=24

$$\frac{-27}{6} = \frac{-27 \times 4}{6 \times 4} = \frac{-108}{24}$$

And,

 $\frac{1}{8} = \frac{1 \times 3}{8 \times 3} = \frac{3}{24}$

Therefore,

$$\left(\frac{-27}{6}\right) + \left(\frac{1}{8}\right)$$
$$= \left(\frac{-108}{24}\right) + \left(\frac{3}{24}\right)$$
$$= \frac{-108 + 3}{24}$$
$$= \frac{-105}{24}$$

In lowest terms,

$$\frac{-105}{24} = \frac{-105 \div 3}{24 \div 3} = \frac{-35}{8}$$
(iii)

$$\frac{-13}{20} + \frac{11}{14} + \frac{-5}{7} + \frac{7}{10}$$

We arrange the numbers,

$$= \left(\frac{-13}{20} + \frac{7}{10}\right) + \left(\frac{11}{14} + \frac{-5}{7}\right)$$

LCM of 20 and 10 =20

 $\frac{-13}{20} = \frac{-13 \times 1}{20 \times 1} = \frac{-13}{20}$

And,

 $\frac{7}{10} = \frac{7 \times 2}{10 \times 2} = \frac{14}{20}$

LCM of 14 and 7 =14

 $\frac{11}{14} = \frac{11 \times 1}{14 \times 1} = \frac{11}{14}$

And,

 $\frac{-5}{7} = \frac{-5 \times 2}{7 \times 2} = \frac{-10}{14}$

Now,

$$\begin{pmatrix} \frac{-13}{20} + \frac{14}{20} \end{pmatrix} + \begin{pmatrix} \frac{11}{14} + \frac{-10}{14} \end{pmatrix}$$
$$= \begin{pmatrix} \frac{-13+14}{20} \end{pmatrix} + \begin{pmatrix} \frac{11+(-10)}{14} \end{pmatrix}$$

$$=\left(\frac{1}{20}\right)+\left(\frac{1}{14}\right)$$

Now, we take LCM of 20 and 14=140

 $\frac{1}{20} = \frac{1 \times 7}{20 \times 7} = \frac{7}{140}$

And,

 $\frac{1}{14} = \frac{1 \times 10}{14 \times 10} = \frac{10}{140}$

Therefore,

$$\left(\frac{1}{20}\right) + \left(\frac{1}{14}\right)$$
$$= \left(\frac{7}{140}\right) + \left(\frac{10}{140}\right)$$
$$= \frac{7+10}{140}$$
$$= \frac{17}{140}$$

(iv)

$$\frac{-6}{7} + \frac{-5}{6} + \frac{-4}{9} + \frac{-15}{7}$$

We arrange the numbers,

$$= \left(\frac{-6}{7} + \frac{-15}{7}\right) + \left(\frac{-5}{6} + \frac{-4}{9}\right)$$

LCM of 4 and 9 = 18

$$\frac{-4}{9} = \frac{-4 \times 2}{9 \times 2} = \frac{-8}{18}$$

And,

 $\frac{-5}{6} = \frac{-5 \times 3}{6 \times 3} = \frac{-15}{18}$

Now,

$$=\frac{7+10}{140}$$

$$=\frac{17}{140}$$
(iv)

$$\frac{-6}{7}+\frac{-5}{6}+\frac{-4}{9}+\frac{-15}{7}$$
We arrange the numbers,

$$=\left(\frac{-6}{7}+\frac{-15}{7}\right)+\left(\frac{-5}{6}+\frac{-4}{9}\right)$$
LCM of 4 and 9 =18

$$\frac{-4}{9}=\frac{-4\times2}{9\times2}=\frac{-8}{18}$$
And,

$$\frac{-5}{6}=\frac{-5\times3}{6\times3}=\frac{-15}{18}$$
Now,

$$\left(\frac{-6}{7}+\frac{-15}{7}\right)+\left(\frac{-8}{18}+\frac{-15}{18}\right)$$

$$=\left(\frac{-6+(-15)}{7}\right)+\left(\frac{-8+(-15)}{18}\right)$$

$$=\left(\frac{-6-15}{7}\right)+\left(\frac{-8-15}{18}\right)$$

$$=\left(\frac{-21}{7}\right)+\left(\frac{-23}{18}\right)$$

In lowest terms,

$$\frac{-21}{7} = \frac{-21 \div 7}{7 \div 7} = \frac{-3}{1}$$

Now, we take LCM of 1 and 18=18

$\frac{-3}{1} = \frac{-3 \times 18}{1 \times 18} = \frac{-54}{18}$
And,
$\frac{-23}{18} = \frac{-23 \times 1}{18 \times 1} = \frac{-23}{18}$
Therefore,
$= \left(\frac{-3}{1}\right) + \left(\frac{-23}{18}\right)$
$=\left(\frac{-54}{18}\right)+\left(\frac{-23}{18}\right)$
$=\frac{-54+(-23)}{18}$
$=\frac{-54-23}{18}$
$=\frac{-77}{18}$
9 Question

Question

The sum of two rational numbers is -2. If one the numbers is $\frac{-14}{5}$ find the other.

Answer

Sum of two rational numbers = -2

One number $=\frac{-14}{5}$

Let the other rational number = x

Now,

According to question,

$$\frac{-14}{5} + x = -2$$

$$\Rightarrow x = -2 - \frac{-14}{5}$$
$$\Rightarrow x = \frac{-10 - (-14)}{5}$$
$$\Rightarrow x = \frac{-10 + 14}{5}$$

$$\Rightarrow x = \frac{4}{5}$$

Therefore, the other rational number is $\frac{4}{5}$

10. Question

The sum of two rational numbers is $\frac{-1}{2}$. If one of the numbers is $\frac{5}{6}$, find the other.

Sum of two rational numbers = $\frac{-1}{2}$

One number $=\frac{5}{6}$

Let the other rational number = x

Now,

According to question,

$$\frac{5}{6} + x = \frac{-1}{2}$$
$$\Rightarrow x = \frac{-1}{2} - \frac{5}{6}$$
$$\Rightarrow x = \frac{-3 - 5}{6}$$
$$\Rightarrow x = \frac{-8}{6}$$

$$\mathbf{x} = \frac{-8 \div 2}{6 \div 2} = \frac{-4}{3}$$

unconal number is $\frac{-4}{3}$ **Junce to a constant of the second determinant of the second dete**

$$\frac{-5}{8} + x = \frac{-3}{2}$$

$$\Rightarrow x = \frac{-3}{2} - \frac{-5}{8}$$

$$\Rightarrow x = \frac{-12 - (-5)}{8}$$

$$\Rightarrow x = \frac{-12 + 5}{8}$$

$$\Rightarrow x = \frac{-7}{8}$$

Therefore, $\frac{-7}{8}$ should be added to $\frac{-5}{8}$ so as to get $\frac{-3}{2}$

12. Question

What number should be added to -1 so as to get $\frac{5}{7}$?

Answer

Let the number = x

Now,

According to question,

$$-1 + x = \frac{5}{7}$$

$$\Rightarrow x = \frac{5}{7} - (-1)$$

$$\Rightarrow x = \frac{5 - (-7)}{7}$$

$$\Rightarrow x = \frac{5 + 7}{7}$$

$$\Rightarrow x = \frac{12}{7}$$

 $2 -1 \text{ so as to get } \frac{5}{7}$ What number should be subtracted from $\frac{-2}{3}$ to get $\frac{-1}{6}$ Answer Let the number = x Now, According to question, $\frac{-2}{3} - x = \frac{-1}{6}$

$$\frac{-2}{3} - x = \frac{-1}{6}$$

$$\Rightarrow x = \frac{-2}{3} - (\frac{-1}{6})$$

$$\Rightarrow x = \frac{-4 - (-1)}{6}$$

$$\Rightarrow x = \frac{-4 + 1}{6}$$

$$\Rightarrow x = \frac{-3}{6}$$

In lowest terms,

$$x = \frac{-3 \div 3}{6 \div 3} = \frac{-1}{2}$$

Therefore, $\frac{-1}{2}$ should be subtracted from $\frac{-2}{3}$ so as to get $\frac{-1}{6}$

14. Question

- (i) Which rational number is its own additive inverse?
- (ii) Is the difference of two rational numbers a rational number?
- (iii) Is addition commutative on rational numbers?
- (iv) Is addition associative on rational numbers?
- (v) Is subtraction commutative on rational numbers?
- (vi) Is subtraction associative on rational numbers?
- (vii) What is the negative of a negative rational number?

(i) A Additive inverse of a number $\frac{a}{b}$ is the number $-\frac{a}{b}$ such that, $\frac{a}{b} + \left(\frac{-a}{b}\right) = 0$

2.010

0 is the rational number that is its own additive inverse

(ii) Let there be 2 rational numbers, $\frac{a}{b}$ and $\frac{c}{d}$ where, $b \neq 0$ and $d \neq 0$

$$\frac{a}{b} - \frac{c}{d}$$

LCM of b and d = bd

$$=\frac{ad - bc}{bd}$$

Where, bd $\neq 0$

Therefore, $\frac{ad-bc}{bd}$ is a rational number

Hence,

Yes, the difference of two rational numbers a rational number

(iii) Yes, addition is commutative on rational numbers

Let there be 2 rational numbers, $\frac{a}{b}$ and $\frac{c}{d}$ where, $b \neq 0$ and $d \neq 0$

Then,

 $\frac{a}{b} + \frac{c}{d} = \frac{c}{d} + \frac{a}{b}$

(iv) Yes, addition is associative on rational numbers

Let there be 3 rational numbers, $\frac{a}{b}$, $\frac{c}{d}$ and $\frac{e}{f}$ where, $b \neq 0$, $d \neq 0$ and $f \neq 0$

Then,

 $\frac{a}{b} + \left(\frac{c}{d} + \frac{e}{f}\right) = \left(\frac{a}{b} + \frac{c}{d}\right) + \frac{e}{f}$

(v) No, subtraction is not commutative on rational numbers

Let there be 2 rational numbers, $\frac{a}{b}$ and $\frac{c}{d}$ where, $b \neq 0$ and $d \neq 0$

Then,

 $\frac{a}{b} + \frac{c}{d} \neq \frac{c}{d} + \frac{a}{b}$

(vi) No, addition is not associative on rational numbers

Let there be 3 rational numbers, $\frac{a}{b}$, $\frac{c}{d}$ and $\frac{e}{f}$ where, $b \neq 0$, $d \neq 0$ and $f \neq 0$

Then,

$$\frac{a}{b} + \left(\frac{c}{d} + \frac{e}{f}\right) \neq \left(\frac{a}{b} + \frac{c}{d}\right) + \frac{e}{f}$$

(vii) Negative of a negative rational number is the number itself without the negative sign.

Exercise 1D

1. Question

Find each of the following products:

(i)
$$\frac{3}{5} \times \frac{-7}{8}$$
 (ii) $\frac{-9}{2} \times \frac{5}{4}$ (iii) $\frac{-6}{11} \times \frac{-5}{3}$
(iv) $\frac{-2}{3} \times \frac{6}{7}$ (v) $\frac{-12}{5} \times \frac{10}{-3}$ (vi) $\frac{25}{-9} \times \frac{3}{-10}$
(vii) $\frac{5}{-18} \times \frac{-9}{20}$ (viii) $\frac{-13}{15} \times \frac{-25}{26}$ (ix) $\frac{16}{-21} \times \frac{14}{5}$
(x) $\frac{-7}{6} \times 24$ (xi) $\frac{7}{24} \times (-48)$
(xii) $\frac{-13}{5} \times (-10)$
Answer
(i)
 $\frac{3}{5} \times \frac{-7}{8}$
 $= \frac{-3x - 7}{5 \times 8}$
 $= \frac{-21}{40}$
(ii)
 $\frac{-9}{2} \times \frac{5}{4}$
 $= \frac{-9 \times 5}{2 \times 4}$
 $= \frac{-45}{8}$
(iii)
 $\frac{-6}{11} \times \frac{-5}{3}$
 $= \frac{-6 \times -5}{11 \times 3}$

 $=\frac{30}{33}$

In lowest terms,

 $\frac{30}{33} = \frac{30 \div 3}{33 \div 3} = \frac{10}{11}$ (iv) $\frac{-2}{3} \times \frac{6}{7}$ $= \frac{-2 \times 6}{3 \times 7}$ $= \frac{-12}{21}$ In lowest terms,

 $\frac{-12}{21} = \frac{-12 \div 3}{21 \div 3} = \frac{-4}{7}$ (v) $\frac{-12}{5} \times \frac{10}{-3}$ $= \frac{-12 \times 10}{5 \times -3}$ $= \frac{-120}{-15} = \frac{-120 \times -1}{-15 \times -1} = \frac{120}{15}$ In lowest terms, $\frac{120}{15} = \frac{120 \div 3}{15 \div 3} = \frac{40}{5}$ Further, $\frac{40}{5} = \frac{40 \div 5}{5 \div 5} = \frac{8}{1} = 8$ (vi) $\frac{25}{-9} \times \frac{3}{-10}$

 $\frac{25}{-9} \times \frac{3}{-10}$ $= \frac{25 \times 3}{-9 \times -10}$ $= \frac{75}{90}$

In lowest terms,

 $\frac{75}{90} = \frac{75 \div 15}{90 \div 15} = \frac{5}{6}$ (vii) $\frac{5}{-18} \times \frac{-9}{20}$

 $=\frac{5\times-9}{-18\times20}$ $=\frac{-45}{-360}=\frac{-45\times-1}{-360\times-1}=\frac{45}{360}$ In lowest terms, $\frac{45}{360} = \frac{45 \div 45}{360 \div 45} = \frac{1}{8}$ (viii) $\frac{-13}{15} \times \frac{-25}{26}$ $=\frac{-13\times-25}{15\times26}$ $=\frac{325}{390}$ In lowest terms. 325 325 ÷ 5 65 $\frac{1}{390} = \frac{1}{390 \div 5} = \frac{1}{78}$ Further, $\frac{65}{78} = \frac{65 \div 13}{78 \div 13} = \frac{5}{6}$ (ix) $\frac{16}{-21} \times \frac{14}{5}$ $=\frac{16\times14}{-21\times5}$ $=\frac{224}{-105}=\frac{224\times-1}{-105\times-1}=\frac{-224}{105}$ In lowest terms, $\frac{-224}{105} = \frac{-224 \div 7}{105 \div 7} = \frac{-32}{15}$ (x) $\frac{-7}{6} \times 24$ $=\frac{-7}{6}\times\frac{24}{1}$ $=\frac{-7\times24}{6\times1}$ $=\frac{-168}{6}$ In lowest terms, $\frac{-168}{6} = \frac{-168 \div 2}{6 \div 2} = \frac{-84}{3}$

Further,

$$\frac{-84}{3} = \frac{-84 \div 3}{3 \div 3} = \frac{-28}{1} = -28$$

(xi)
$$\frac{7}{24} \times -48$$

$$= \frac{7}{24} \times \frac{-48}{1}$$

$$= \frac{7 \times -48}{24 \times 1}$$

$$= \frac{-336}{24}$$

In lowest terms,

$$\frac{-336}{24} = \frac{-336 \div 4}{24 \div 4} = \frac{-84}{6}$$
Further,

$$\frac{-84}{6} = \frac{-84 \div 6}{6 \div 6} = \frac{-14}{1} = -14$$
(xii)

$$\frac{-13}{5} \times -10$$

$$= \frac{-13}{5} \times \frac{-10}{1}$$

$$= \frac{-13 \times -10}{5 \times 1}$$
In lowest terms,

$$\frac{130}{5} = \frac{130 \div 5}{5} = \frac{26}{5} = 26$$

 $\frac{130}{5} = \frac{130 \div 5}{5 \div 5} = \frac{26}{1} = 26$

2. Question

Verify each of the following:

(i)
$$\frac{3}{5} \times \frac{-5}{9} = \frac{-5}{9} \times \frac{3}{7}$$
 (ii) $\frac{-8}{7} \times \frac{13}{9} = \frac{13}{9} \times \frac{-8}{7}$
(iii) $\frac{-12}{5} \times \frac{7}{-36} = \frac{7}{-36} \times \frac{-12}{5}$
(iv) $-8 \times \frac{-13}{12} = \frac{-13}{12} \times (-8)$
Answer

$$LHS = \frac{3}{7} \times \frac{-5}{9}$$
$$= \frac{3 \times -5}{7 \times 9}$$
$$= \frac{-15}{63}$$

In lowest terms,

 $\frac{-15}{63} = \frac{-15 \div 3}{63 \div 3} = \frac{-5}{21}$ $RHS = \frac{-5}{9} \times \frac{3}{7}$ $=\frac{-5\times3}{9\times7}$ $=\frac{-15}{63}$

In lowest terms,

 $\frac{-15}{63} = \frac{-15 \div 3}{63 \div 3} = \frac{-5}{21}$ LHS=RHS Verified (ii) $LHS = \frac{-8}{7} \times \frac{13}{9}$ $=\frac{-8\times13}{7\times9}$ $=\frac{-104}{63}$ $\text{RHS} = \frac{13}{9} \times \frac{-8}{7}$ $=\frac{13 \times -8}{9 \times 7}$ $=\frac{-104}{63}$ LHS=RHS Verified (iii) LHS = $\frac{-12}{5} \times \frac{7}{-36}$ $=\frac{-12\times7}{5\times-36}$ $=\frac{-84}{-180}=\frac{-84\times-1}{-180\times-1}=\frac{84}{180}$

In lowest terms,

 $\frac{84}{180} = \frac{84 \div 12}{180 \div 12} = \frac{7}{15}$ $\text{RHS} = \frac{7}{-36} \times \frac{-12}{5}$ $=\frac{7\times-12}{-36\times5}$ $=\frac{-84}{-180}=\frac{-84\times-1}{-180\times-1}=\frac{84}{180}$ In lowest terms, $\frac{84}{180} = \frac{84 \div 12}{180 \div 12} = \frac{7}{15}$ LHS=RHS Verified (iv) $LHS = -8 \times \frac{-13}{12}$ $=\frac{-8 \times -13}{12}$ $=\frac{104}{12}$ In lowest terms, $\frac{104}{12} = \frac{104 \div 4}{12 \div 4} = \frac{26}{3}$ $RHS = \frac{-13}{12} \times -8$ $=\frac{-13 \times -8}{12}$

$$=\frac{104}{12}$$

In lowest terms,

 $\frac{104}{12} = \frac{104 \div 4}{12 \div 4} = \frac{26}{3}$

LHS=RHS

Verified

3. Question

Verify each of the following:

(i)
$$\left(\frac{5}{7} \times \frac{12}{13}\right) \times \frac{7}{18} = \frac{5}{7} \times \left(\frac{12}{13} \times \frac{7}{18}\right)$$

(ii)
$$\underbrace{\bullet \frac{-13}{24}}_{(iii)} \left(\frac{-12}{5} \times \frac{35}{36} \right) = \left(\frac{-13}{24} \times \frac{-12}{5} \right) \times \frac{35}{36}$$

(iii) $\left(\frac{-9}{5} \times \frac{-10}{3} \right) \times \frac{21}{-4} = \frac{-9}{5} \times \left(\frac{-10}{3} \times \frac{21}{-4} \right)$

Answer

(i) $\begin{pmatrix} \frac{5}{7} \times \frac{12}{13} \end{pmatrix} \times \frac{7}{18} = \frac{5}{7} \times \left(\frac{12}{13} \times \frac{7}{18}\right) \\
LHS = \left(\frac{5}{7} \times \frac{12}{13}\right) \times \frac{7}{18} \\
= \frac{5 \times 12}{7 \times 13} \times \frac{7}{18} \\
= \frac{60}{91} \times \frac{7}{18} \\
= \frac{60 \times 7}{91 \times 18} \\
= \frac{420}{1638}$

In lowest terms,

 $\frac{420}{1638} = \frac{420 \div 42}{1638 \div 42} = \frac{10}{13}$ RHS = $\frac{5}{7} \times \left(\frac{12}{13} \times \frac{7}{18}\right)$ = $\frac{5}{7} \times \frac{12 \times 7}{13 \times 18}$ = $\frac{5}{7} \times \frac{84}{234}$ = $\frac{420}{1638}$ In lowest terms, $\frac{420}{1638} = \frac{420 \div 42}{1638 \div 42} = \frac{10}{13}$ LHS=RHS Verified (ii)

$$\frac{-13}{24} \times \left(\frac{-12}{5} \times \frac{35}{36}\right) = \left(\frac{-13}{24} \times \frac{-12}{5}\right) \times \frac{35}{36}$$
$$\text{LHS} = \frac{-13}{24} \times \left(\frac{-12}{5} \times \frac{35}{36}\right)$$
$$= \frac{-13}{24} \times \frac{-12 \times 35}{5 \times 36}$$

$=\frac{-13}{24} \times \frac{-420}{180}$
$=\frac{60\times7}{24\times180}$
$=\frac{5460}{4320}$
In lowest terms,
$\frac{5460}{4320} = \frac{5460 \div 10}{4320 \div 10} = \frac{546}{432}$
Further,
$\frac{546}{432} = \frac{546 \div 6}{432 \div 6} = \frac{91}{72}$
$\text{RHS} = \left(\frac{-13}{24} \times \frac{-12}{5}\right) \times \frac{35}{36}$
$=\frac{-13 \times -12}{24 \times 5} \times \frac{35}{36}$
$=\frac{156}{120}\times\frac{35}{36}$
$=\frac{156\times35}{120\times36}$
$=\frac{5460}{4320}$
In lowest terms,
$\frac{5460}{4320} = \frac{5460 \div 10}{4320 \div 10} = \frac{546}{432}$
Further,
$\frac{546}{432} = \frac{546 \div 6}{432 \div 6} = \frac{91}{72}$
LHS=RHS
Verified
(iii)
$\left(\frac{-9}{5} \times \frac{-10}{3}\right) \times \frac{21}{-4} = \frac{-9}{5} \times \left(\frac{-10}{3} \times \frac{21}{-4}\right)$
$LHS = \left(\frac{-9}{5} \times \frac{-10}{3}\right) \times \frac{21}{-4}$
$=\frac{-9\times-10}{5\times3}\times\frac{21}{-4}$
$=\frac{90}{15}\times\frac{21}{-4}$
$=\frac{90\times21}{15\times-4}$

$=\frac{1890}{-60}=\frac{1890\times-1}{-60\times-1}=\frac{-1890}{60}$
In lowest terms,
$\frac{-1890}{60} = \frac{-1890 \div 10}{60 \div 10} = \frac{-189}{6}$
Further,
$\frac{-189}{6} = \frac{-189 \div 3}{6 \div 3} = \frac{-63}{2}$
$\text{RHS} = \frac{-9}{5} \times \left(\frac{-10}{3} \times \frac{21}{-4}\right)$
$=\frac{-9}{5} \times \frac{-10 \times 21}{3 \times -4}$
$=\frac{-9}{5} \times \frac{-210}{-12}$
$=\frac{-9\times-210}{5\times-12}$
$=\frac{1890}{-60} = \frac{1890 \times -1}{-60 \times -1} = \frac{-1890}{60}$
In lowest terms,
$\frac{-1890}{60} = \frac{-1890 \div 10}{60 \div 10} = \frac{-189}{6}$
Further,
$\frac{-189}{-189} - \frac{-189 \div 3}{-63} - \frac{-63}{-63}$
6 6÷3 2
LHS=RHS
Verified
4. Question
Fill in the blanks:
(i) $\frac{-23}{\times} \times \frac{18}{18} = \frac{18}{\times} ($

(i)
$$\frac{17}{17} \times \frac{35}{35} - \frac{35}{35} \times (....)$$

(ii) $-38 \times \frac{-7}{19} = \frac{-7}{19} \times (....)$
(iii) $\left(\frac{15}{7} \times \frac{-21}{10}\right) \times \frac{-5}{6} = (....) \times \left(\frac{-21}{10} \times \frac{-5}{6}\right)$
(iv) $\frac{-12}{5} \times \left(\frac{4}{15} \times \frac{25}{-16}\right) = \left(\frac{-12}{5} \times \frac{4}{15}\right) \times (....)$

(i)

$$\frac{-23}{17} \times \frac{18}{35} = \frac{18}{35} \times \frac{-23}{17}$$

(ii)

By Commutative Property, i.e, $a \times b = b \times a$

$$-38 \times \frac{-7}{19} = \frac{-7}{19} \times -38$$

(iii)

By Associative Property, i.e, $(a \times b) \times c = a \times (b \times c)$

$$\left(\frac{15}{7} \times \frac{-21}{10}\right) \times \frac{-5}{6} = \frac{15}{7} \times \left(\frac{-21}{10} \times \frac{-5}{6}\right)$$

(iv)

By Associative Property, i.e, $(a \times b) \times c = a \times (b \times c)$

$$\frac{-12}{5} \times \left(\frac{4}{15} \times \frac{25}{-16}\right) = \left(\frac{-12}{5} \times \frac{4}{15}\right) \times \frac{25}{-16}$$

5. Question

Find the multiplicative inverse (i.e., reciprocal) of:

(i)
$$\frac{13}{25}$$
 (ii) $\frac{-17}{12}$ (iii) $\frac{-7}{24}$ (iv) 18 (v) -6
(vi) $\frac{-3}{-5}$ (vii) -1 (viii) $\frac{0}{2}$ (ix) $\frac{2}{-5}$ (x) $\frac{-1}{8}$

Answer

A multiplicative inverse for a number x, is a number which when multiplied by x yields the multiplicative identity, 1

R. CON

The multiplicative inverse of a rational number $\frac{a}{b}$ is $\frac{b}{c}$.

Therefore,

(i) The multiplicative inverse of $\frac{13}{25} = \frac{2}{12}$

(ii) The multiplicative inverse of $\frac{-17}{12} = \frac{12}{-17}$.

In standard form,

$$\frac{12}{-17} = \frac{12 \times -1}{-17 \times -1} = \frac{-12}{17}$$

(iii) The multiplicative inverse of $\frac{-7}{24} = \frac{24}{-7}$.

In standard form,

 $\frac{24}{-7} = \frac{24 \times -1}{-7 \times -1} = \frac{-24}{7}$

(iv) The multiplicative inverse of $18 = \frac{1}{18}$.

(v) The multiplicative inverse of $-6 = \frac{1}{-6}$.

$$\frac{1}{-6} = \frac{1 \times -1}{-6 \times -1} = \frac{-1}{6}$$

(vi) The multiplicative inverse of $\frac{-3}{-5} = \frac{-5}{-3}$.

In standard form,

 $\frac{-5}{-3} = \frac{-5 \times -1}{-3 \times -1} = \frac{3}{5}$

(vii) The multiplicative inverse of -1 = -1.

(viii) The multiplicative inverse of $\frac{0}{2}$ is undefined.

Since, $\frac{2}{0}$ is undefined.

(ix) The multiplicative inverse of $\frac{2}{-5} = \frac{-5}{2}$.

(x) The multiplicative inverse of $\frac{-1}{8} = \frac{8}{-1}$.

In standard form,

$$\frac{8}{-1} = \frac{8 \times -1}{-1 \times -1} = \frac{-8}{1} = -8$$

In standard form,

$$\frac{8}{-1} = \frac{8 \times -1}{-1 \times -1} = \frac{-8}{1} = -8$$
6. Question
Find the value of:

$$(i) \left(\frac{5}{8}\right)^{-1} (ii) \left(\frac{-4}{9}\right)^{-1} (iii) \left(-7\right)^{-1} (iv) \left(\frac{1}{-3}\right)^{-1}$$
Answer
Let there be a rational number $\frac{a}{b}$ then $\binom{a}{b}^{-1} = \frac{b}{a}$
Therefore,
(i)
 $\left(\frac{5}{8}\right)^{-1} = \frac{8}{5}$
(ii)
 $(-4)^{-1} \quad 9 \quad 9 \times -1 \quad -9$

$$\left(\frac{5}{8}\right)^{-1} = \frac{8}{5}$$

$$\left(\frac{-4}{9}\right)^{-1} = \frac{9}{-4} = \frac{9 \times -1}{-4 \times -1} = \frac{-9}{4}$$

(iii)

$$(-7)^{-1} = \left(\frac{-7}{1}\right)^{-1} = \frac{1}{-7} = \frac{1 \times -1}{-7 \times -1} = \frac{-1}{7}$$

(iv)

$$\left(\frac{1}{-3}\right)^{-1} = \frac{-3}{1} = -3$$

7. Question

Verify the following:

(i)
$$\frac{3}{7} \times \left(\frac{5}{6} + \frac{12}{13}\right) = \left(\frac{3}{7} \times \frac{5}{6}\right) + \left(\frac{3}{7} \times \frac{12}{13}\right)$$

(ii) $\frac{-15}{4} \times \left(\frac{3}{7} + \frac{-12}{5}\right) = \left(\frac{-15}{4} \times \frac{3}{7}\right) + \left(\frac{-15}{4} \times \frac{-12}{5}\right)$
(iii) $\left(\frac{-8}{3} + \frac{-13}{12}\right) \times \frac{5}{6} = \left(\frac{-8}{3} \times \frac{5}{6}\right) + \left(\frac{-13}{12} \times \frac{5}{6}\right)$
(iv) $\frac{-16}{7} \times \left(\frac{-8}{9} + \frac{-7}{6}\right) = \left(\frac{-16}{7} \times \frac{-8}{9}\right) + \left(\frac{-16}{7} \times \frac{-7}{6}\right)$

_

. .

_

(i)

$$\frac{3}{7} \times \left(\frac{5}{6} + \frac{12}{13}\right) = \left(\frac{3}{7} \times \frac{5}{6}\right) + \left(\frac{3}{7} \times \frac{12}{13}\right)$$
LHS = $\frac{3}{7} \times \left(\frac{5}{6} + \frac{12}{13}\right)$
= $\frac{3}{7} \times \left(\frac{5 \times 13 + 12 \times 6}{78}\right)$
= $\frac{3}{7} \times \left(\frac{65 + 72}{78}\right)$
= $\frac{3}{7} \times \left(\frac{137}{78}\right)$
= $\frac{3 \times 137}{7 \times 78}$
= $\frac{411}{546}$
In lowest terms,
 $\frac{411}{546} = \frac{411 \div 3}{546 \div 3} = \frac{137}{182}$
RHS = $\left(\frac{3}{7} \times \frac{5}{6}\right) + \left(\frac{3}{7} \times \frac{12}{13}\right)$
= $\left(\frac{3 \times 5}{7 \times 6}\right) + \left(\frac{3 \times 12}{7 \times 13}\right)$
= $\frac{15 \times 13 + 36 \times 6}{546}$
= $\frac{195 + 216}{546}$

In lowest terms,

$\frac{411}{546} = \frac{411 \div 3}{546 \div 3} = \frac{137}{182}$
LHS=RHS
Verified
(ii)
$\frac{-15}{4} \times \left(\frac{3}{7} + \frac{-12}{5}\right) = \left(\frac{-15}{4} \times \frac{3}{7}\right) + \left(\frac{-15}{4} \times \frac{-12}{5}\right)$
$LHS = \frac{-15}{4} \times \left(\frac{3}{7} + \frac{-12}{5}\right)$
$=\frac{-15}{4} \times \left(\frac{3 \times 5 + (-12) \times 7}{35}\right)$
$=\frac{-15}{4} \times \left(\frac{15-84}{35}\right)$
$=\frac{-15}{4}\times\left(\frac{-69}{35}\right)$
$=\frac{-15\times-69}{4\times35}$
$=\frac{1035}{140}$
In lowest terms,
$\frac{1035}{140} = \frac{1035 \div 5}{140 \div 5} = \frac{207}{28}$
RHS = $\left(\frac{-15}{4} \times \frac{3}{7}\right) + \left(\frac{-15}{4} \times \frac{-12}{5}\right)$
$= \left(\frac{-15 \times 3}{4 \times 7}\right) + \left(\frac{-15 \times -12}{4 \times 5}\right)$
$=\frac{-45}{28}+\left(\frac{180}{20}\right)$
$=\frac{-45\times5+180\times7}{140}$
$=\frac{-225+1260}{140}$
$=\frac{1035}{140}$
In lowest terms,
$\frac{1035}{140} = \frac{1035 \div 5}{140 \div 5} = \frac{207}{28}$
LHS=RHS
Verified
(iii)
$\left(\frac{-8}{3} + \frac{-13}{12}\right) \times \frac{5}{6} = \left(\frac{-8}{3} \times \frac{5}{6}\right) + \left(\frac{-13}{12} \times \frac{5}{6}\right)$

LHS =
$$\left(\frac{-8}{3} + \frac{-13}{12}\right) \times \frac{5}{6}$$

= $\left(\frac{-8 \times 4 + (-13) \times 1}{12}\right) \times \left(\frac{5}{6}\right)$
= $\left(\frac{-32 - 13}{12}\right) \times \left(\frac{5}{6}\right)$
= $\frac{-45}{12} \times \frac{5}{6}$
= $\frac{-45 \times 5}{12 \times 6}$
= $\frac{-225}{72}$

In lowest terms,

$$\frac{-225}{72} = \frac{-225 \div 9}{72 \div 9} = \frac{-25}{8}$$
RHS = $\left(\frac{-8}{3} \times \frac{5}{6}\right) + \left(\frac{-13}{12} \times \frac{5}{6}\right)$
= $\left(\frac{-8 \times 5}{3 \times 6}\right) + \left(\frac{-13 \times 5}{12 \times 6}\right)$
= $\frac{-40}{18} + \left(\frac{-65}{72}\right)$
= $\frac{-40 \times 4 + (-65) \times 1}{72}$
= $\frac{-160 - 65}{72}$
= $\frac{-225}{72}$
In lowest terms,

 $\frac{-225}{72} = \frac{-225 \div 9}{72 \div 9} = \frac{-25}{8}$

LHS=RHS

Verified

(iv)

$$\frac{-16}{7} \times \left(\frac{-8}{9} + \frac{-7}{6}\right) = \left(\frac{-16}{7} \times \frac{-8}{9}\right) + \left(\frac{-16}{7} \times \frac{-7}{6}\right)$$

$$LHS = \frac{-16}{7} \times \left(\frac{-8}{9} + \frac{-7}{6}\right)$$

$$= \frac{-16}{7} \times \left(\frac{-8 \times 2 + (-7) \times 3}{18}\right)$$

$$= \frac{-16}{7} \times \left(\frac{-16 - 21}{18}\right)$$

$$= \frac{-16}{7} \times \left(\frac{-37}{18}\right)$$

$$= \frac{-16 \times -37}{7 \times 18}$$
$$= \frac{592}{126}$$

In lowest terms,

$\frac{592}{126} = \frac{592 \div 2}{126 \div 2} = \frac{296}{63}$
$\operatorname{RHS} = \left(\frac{-16}{7} \times \frac{-8}{9}\right) + \left(\frac{-16}{7} \times \frac{-7}{6}\right)$
$= \left(\frac{-16 \times -8}{7 \times 9}\right) + \left(\frac{-16 \times -7}{7 \times 6}\right)$
$=\frac{128}{63}+\left(\frac{112}{42}\right)$
$=\frac{128\times2+112\times3}{126}$
$=\frac{256+336}{126}$
$=\frac{592}{126}$
In lowest terms,

 $\frac{592}{126} = \frac{592 \div 2}{126 \div 2} = \frac{296}{63}$

LHS=RHS

Verified

8. Question

Name the property of multiplication illustrated by each of the following statements:

(i)
$$\frac{-15}{8} \times \frac{-12}{7} = \frac{-12}{7} \times \frac{-15}{8}$$

(ii) $\left(\frac{-2}{3} \times \frac{7}{9}\right) \times \frac{-9}{5} = \frac{-2}{3} \times \left(\frac{7}{9} \times \frac{-9}{5}\right)$
(iii) $\frac{-3}{4} \times \left(\frac{-5}{6} + \frac{7}{8}\right) = \left(\frac{-3}{4} \times \frac{-5}{6}\right) + \left(\frac{-3}{4} \times \frac{7}{8}\right)$
(iv) $\frac{-16}{9} \times 1 = 1 \times \frac{-16}{9} = \frac{-16}{9}$
(v) $\frac{-11}{15} \times \frac{15}{-11} = \frac{15}{-11} \times \frac{-11}{15} = 1$
(vi) $\frac{-7}{5} \times 0 = 0$

- (i) Commutative law i.e., a b = b a
- (ii) Associative law i.e., a(bc) = (ab)c
- (iii) Distributive law i.e., a(b + c) = ab + ac
- (iv) Property of multiplicative identity i.e., $a \times 1=1 \times a$
- (v) Property of multiplicative inverse i.e., $\frac{a}{b} \times \frac{b}{a} = 1$
- (vi) Multiplicative property of 0 i.e., $a \times 0=0$

9. Question

Fill in the blanks:

- (i) The product of a rational number and its reciprocal is......
- (ii) Zero has.....reciprocal.
- (iii) The numbers..... and....are their own reciprocals.
- (iv) Zero is.....the reciprocal of any number.
- (v) The reciprocal of a, where $a \neq 0$, is.....

(vi) The reciprocal of $\frac{1}{a}$, where $a \neq 0$, is.....

- (vii) The reciprocal of a positive rational number is.....
- (viii) The reciprocal of a negative rational number is....

Answer

- (i) 1
- (ii) No
- (iii) 1 and -1
- (iv) Not
- (v) <mark>1</mark>

(vi) a

(vii) Positive

(viii) Negative

Exercise 1E

1. Question

Simplify:

$$(i)\frac{4}{9} \div \frac{-5}{12} (ii) - 8 \div \frac{-7}{16} (iii)\frac{-12}{7} \div (-18) (iv)\frac{-1}{10} \div \frac{-8}{5} (v)\frac{-16}{35} \div \frac{-15}{14} (vi)\frac{-65}{14} \div \frac{13}{7}$$

Answer

(i)

 $\frac{4}{9} \div \frac{-5}{12}$

$=\frac{4}{9}\times\frac{12}{-5}$
$=\frac{4\times12}{9\times-5}$
$=\frac{48}{-45} = \frac{48 \times -1}{-45 \times -1} = \frac{-48}{45}$
In lowest terms,
$\frac{-48}{45} = \frac{-48 \div 3}{45 \div 3} = \frac{-16}{15}$
(ii)
$-8 \div \frac{-7}{16}$
$=\frac{-8}{1}\div\frac{-7}{16}$
$=\frac{-8}{1}\times\frac{16}{-7}$
$=\frac{-8\times16}{1\times-7}$
$=\frac{-128}{-7} = \frac{-128 \times -1}{-7 \times -1} = \frac{128}{7}$
(iii)
$\frac{-12}{7} \div -18$
$=\frac{-12}{7}\div\frac{-18}{1}$
$=\frac{-12}{7} \times \frac{1}{-18}$
$=\frac{-12\times1}{7\times-18}$
$=\frac{-12}{-126} = \frac{-12 \times -1}{-126 \times -1} = \frac{12}{126}$
In lowest terms,
$\frac{12}{126} = \frac{12 \div 6}{126 \div 6} = \frac{2}{21}$
(iv)
$\frac{-1}{10} \div \frac{-8}{5}$
$=\frac{-1}{10}\times\frac{5}{8}$
$=\frac{-1\times5}{10\times-8}$
$=\frac{-5}{-80}=\frac{-5\times-1}{-80\times-1}=\frac{5}{80}$

In lowest terms,

 $\frac{5}{80} = \frac{5 \div 5}{80 \div 5} = \frac{1}{16}$ (v) $\frac{-16}{35} \div \frac{-15}{14}$ $=\frac{-16}{35} \times \frac{14}{-15}$ $=\frac{-16\times14}{35\times-15}$ $=\frac{-224}{-525}=\frac{-224\times-1}{-525\times-1}=\frac{224}{525}$ In lowest terms, $\frac{224}{525} = \frac{224 \div 7}{525 \div 7} = \frac{32}{75}$ (vi) $\frac{-65}{14} \div \frac{13}{7}$ $=\frac{-65}{14}\times\frac{7}{13}$ $=\frac{-65\times7}{14\times13}$ $=\frac{-455}{182}=\frac{-455\times-1}{182\times-1}=\frac{-455}{182}$ In lowest terms, $\frac{-455}{182} = \frac{-455 \div 7}{182 \div 7} = \frac{-65}{26}$ Further, $\frac{-65}{26} = \frac{-65 \div 13}{26 \div 13} = \frac{-5}{2}$

2. Question

Verify whether the given statement is true or false:

(i) $\frac{13}{5} \div \frac{26}{10} = \frac{26}{10} \div \frac{13}{5}$ (ii) $-9 \div \frac{3}{4} = \frac{3}{4} \div (-9)$ (iii) $\frac{-8}{9} \div \frac{-4}{3} = \frac{-4}{3} \div \frac{-8}{9}$ (iv) $\frac{-7}{24} \div \frac{3}{-16} = \frac{3}{-16} \div \frac{-7}{24}$

(i) $\frac{13}{5} \div \frac{26}{10} = \frac{26}{10} \div \frac{13}{5}$ $LHS = \frac{13}{5} \div \frac{26}{10}$ $=\frac{13}{5}\times\frac{10}{26}$ $=\frac{13\times10}{5\times26}$ $=\frac{130}{130}=1$ $RHS = \frac{26}{10} \div \frac{13}{5}$ $=\frac{26}{10}\times\frac{5}{13}$ $=\frac{26\times5}{10\times13}$ $=\frac{130}{130}=1$ Since, RHS = LHSTherefore, True (ii) $-9 \div \frac{3}{4} = \frac{3}{4} \div (-9)$ $LHS = -9 \div \frac{3}{4}$ $=-9\times\frac{4}{3}$ $=\frac{-9\times4}{3}$ $=\frac{-36}{3}=-12$ $\text{RHS} = \frac{3}{4} \div (-9)$ $=\frac{3}{4}\times\frac{1}{-9}$ $=\frac{3\times1}{4\times-9}$ $=\frac{3}{-36}=\frac{-1}{12}$

Since, RHS ≠ LHS

Therefore, False

(iii) $\frac{-8}{9} \div \frac{-4}{3} = \frac{-4}{3} \div \frac{-8}{9}$ $LHS = \frac{-8}{9} \div \frac{-4}{3}$ $= \frac{-8}{9} \div \frac{3}{-4}$ $= \frac{-8 \times 3}{9 \times -4}$ $= \frac{-24}{-36} = \frac{2}{3}$ $RHS = \frac{-4}{3} \div \frac{-8}{9}$ $= \frac{-4}{3} \times \frac{9}{-8}$ $= \frac{-4 \times 9}{3 \times -8}$ $= \frac{-36}{-24} = \frac{3}{2}$

-24 Z Since, RHS \neq LHS

Therefore, False

(iv)

 $\frac{-7}{24} \div \frac{3}{-16} = \frac{3}{-16} \div \frac{-7}{24}$ $LHS = \frac{-7}{24} \div \frac{3}{-16}$ $= \frac{-7}{24} \times \frac{-16}{3}$ $= \frac{-7 \times -16}{24 \times 3}$ $= \frac{112}{72} = \frac{14}{9}$ $RHS = \frac{3}{-16} \div \frac{-7}{24}$ $= \frac{3}{-16} \times \frac{24}{-7}$ $= \frac{3 \times 24}{-16 \times -7}$ $= \frac{72}{112} = \frac{9}{14}$

Since, RHS ≠ LHS

Therefore, False

3. Question

Verify whether the given statement is true or false:

(i)
$$\left(\frac{5}{9} \div \frac{1}{3}\right) \div \frac{5}{2} = \frac{5}{9} \div \left(\frac{1}{3} \div \frac{5}{2}\right)$$

(ii) $\left\{(-16) \div \frac{6}{5}\right\} \div \frac{-9}{10} = (-16) \div \left\{\frac{6}{5} \div \frac{-9}{10}\right\}$
(iii) $\left(\frac{-3}{5} \div \frac{-12}{35}\right) \div \frac{1}{14} = \frac{-3}{5} \div \left(\frac{-12}{35} \div \frac{1}{14}\right)$

Answer

(i)

$$\left(\frac{5}{9} \div \frac{1}{3}\right) \div \frac{5}{2} = \frac{5}{9} \div \left(\frac{1}{3} \div \frac{5}{2}\right)$$
LHS = $\left(\frac{5}{9} \div \frac{1}{3}\right) \div \frac{5}{2}$
= $\left(\frac{5}{9} \times \frac{3}{1}\right) \div \frac{5}{2}$
= $\left(\frac{5 \times 3}{9 \times 1}\right) \div \frac{5}{2}$
= $\frac{15}{9} \div \frac{5}{2}$
= $\frac{15}{9} \div \frac{5}{2}$
= $\frac{15 \times 2}{9 \times 5}$
= $\frac{30}{45} = \frac{30 \div 15}{45 \div 15} = \frac{2}{3}$
RHS = $\frac{5}{9} \div \left(\frac{1}{3} \div \frac{5}{2}\right)$
= $\frac{5}{9} \div \left(\frac{1}{3} \times \frac{2}{5}\right)$
= $\frac{5}{9} \div \left(\frac{1}{3} \times \frac{2}{5}\right)$
= $\frac{5}{9} \div \frac{15}{2}$
= $\frac{5}{9} \times \frac{15}{2}$
= $\frac{5 \times 15}{9 \times 2}$
= $\frac{75}{18} = \frac{75 \div 3}{18 \div 3} = \frac{25}{6}$
RHS \neq LHS

(ii)

 $\left(-16 \div \frac{6}{5}\right) \div \frac{-9}{10} = -16 \div \left(\frac{6}{5} \div \frac{-9}{10}\right)$ LHS = $\left(-16 \div \frac{6}{5}\right) \div \frac{-9}{10}$ $=\left(\frac{-16}{1}\div\frac{6}{5}\right)\div\frac{-9}{10}$ $=\left(\frac{-16}{1}\times\frac{5}{6}\right)\div\frac{-9}{10}$ $=\left(\frac{-16\times5}{1\times6}\right)\div\frac{-9}{10}$ $=\frac{-80}{6}\div\frac{-9}{10}$ $=\frac{-80}{6}\times\frac{10}{-9}$ $=\frac{-80\times10}{6\times-9}$ $=\frac{-800}{-54}=\frac{800}{54}=\frac{800 \div 2}{54 \div 2}=\frac{400}{27}$ $\text{RHS} = -16 \div \left(\frac{6}{5} \div \frac{-9}{10}\right)$ $=\frac{-16}{1}\div\left(\frac{6}{5}\div\frac{-9}{10}\right)$ $=\frac{-16}{1}\div\left(\frac{6}{5}\times\frac{10}{-9}\right)$ $=\frac{-16}{1}\div\frac{60}{-45}$ $=\frac{-16}{1}\times\frac{-45}{60}$ $=\frac{-16 \times -45}{1 \times 60}$ $=\frac{720}{60}=\frac{720\div60}{60\div60}=12$ RHS ≠ LHS Hence. False (iii) $\left(\frac{-3}{5} \div \frac{-12}{35}\right) \div \frac{1}{14} = \frac{-3}{5} \div \left(\frac{-12}{35} \div \frac{1}{14}\right)$ $LHS = \left(\frac{-3}{5} \div \frac{-12}{35}\right) \div \frac{1}{14}$

 $= \left(\frac{-3}{5} \times \frac{35}{-12}\right) \div \frac{1}{14}$

$$= \left(\frac{-3 \times 35}{5 \times -12}\right) \div \frac{1}{14}$$

$$= \frac{-105}{-60} \div \frac{1}{14}$$

$$= \frac{-105}{-60} \times \frac{14}{1}$$

$$= \frac{-105 \times 14}{-60 \times 1}$$

$$= \frac{-1470}{-60} = \frac{-1470}{60 \div 30} = \frac{49}{2}$$
RHS = $\frac{-3}{5} \div \left(\frac{-12}{35} \div \frac{1}{14}\right)$

$$= \frac{-3}{5} \div \left(\frac{-12 \times 1 + 14 \times 35}{35}\right)$$

$$= \frac{-3}{5} \div \left(\frac{-12 \times 1 + 14 \times 35}{35}\right)$$

$$= \frac{-3}{5} \div \frac{-12 + 490}{35}$$

$$= \frac{-3}{5} \div \frac{478}{35}$$

$$= \frac{-3}{5} \div \frac{478}{478}$$

$$= \frac{-105}{2390} = \frac{-105 \div 5}{2390 \div 5} = \frac{-21}{478}$$
RHS \neq LHS
Hence, False
4. Question

The product of two rational numbers is -9. If one of the numbers is -12, find the other.

Answer

Product of two rational numbers = -9

One rational number = -12

Let the other rational number = x

Now,

According to the question,

 $-12 \times x = -9$

$$\Rightarrow x = \frac{-9}{-12}$$
$$\Rightarrow x = \frac{-9}{-12} = \frac{-9 \times -1}{-12 \times -1} = \frac{9}{12}$$

$$\Rightarrow x = \frac{9}{12} = \frac{9 \div 3}{12 \div 3} = \frac{3}{4}$$

Hence, the other rational number is $\frac{3}{4}$

5. Question

The product of two rational numbers is $\frac{-16}{9}$. If one of the numbers is $\frac{-4}{3}$, find the other.

Answer

Product of two rational numbers $=\frac{-16}{9}$

One rational number = $\frac{-4}{3}$

Let the other rational number = x

Now,

According to the question,

$$\frac{-4}{3} \times x = \frac{-16}{9}$$

$$\Rightarrow x = \frac{-16}{9} \div \frac{-4}{3}$$

$$\Rightarrow x = \frac{-16}{9} \times \frac{3}{-4}$$

$$\Rightarrow x = \frac{-16 \times 3}{9 \times -4}$$

$$\Rightarrow x = \frac{-48}{-36} = \frac{-48 \times -1}{-36 \times -1} = \frac{48}{36}$$

$$\Rightarrow x = \frac{48}{36} = \frac{48 \div 12}{36 \div 12} = \frac{4}{3}$$
Hence, the other rational number is $\frac{4}{3}$
6. Question

By what rational number should we multiply $\frac{-15}{56}$ to get $\frac{-5}{7}$?

Answer

Let x be multiplied by $\frac{-15}{56}$ to get $\frac{-5}{7}$

It can be written as,

$$\frac{-15}{56} \times x = \frac{-5}{7}$$
$$\Rightarrow x = \frac{-5}{7} \div \frac{-15}{56}$$
$$\Rightarrow x = \frac{-5}{7} \times \frac{56}{-15}$$

$$\Rightarrow x = \frac{-5 \times 56}{7 \times -15}$$
$$\Rightarrow x = \frac{-280}{-105} = \frac{-280 \times -1}{-105 \times -1} = \frac{280}{105}$$
$$\Rightarrow x = \frac{280}{105} = \frac{280 \times 35}{105 \times 35} = \frac{8}{3}$$

Hence, it should be multiplied by is $\frac{8}{3}$

7. Question

By what rational number should $\frac{-8}{39}$ be multiplied to obtain $\frac{1}{26}$?

Answer

Let x be multiplied by $\frac{-8}{39}$ to get $\frac{1}{26}$

It can be written as,

It can be written as,

$$\frac{-8}{39} \times x = \frac{1}{26}$$

$$\Rightarrow x = \frac{1}{26} \div \frac{-8}{39}$$

$$\Rightarrow x = \frac{1}{26} \times \frac{39}{-8}$$

$$\Rightarrow x = \frac{1 \times 39}{26 \times -8}$$

$$\Rightarrow x = \frac{39}{-208} = \frac{39 \times -1}{-208 \times -1} = \frac{-39}{208}$$

$$\Rightarrow x = \frac{-39}{208} = \frac{-39 \div 13}{208 \div 13} = \frac{-3}{16}$$
Hence, it should be multiplied by is $\frac{-3}{16}$
8. Question

Hence, it should be multiplied by is $\frac{-3}{16}$

8. Question

By what number should
$$\frac{-33}{8}$$
 be divided to get $\frac{-11}{2}$?

Answer

Let $\frac{-33}{8}$ be divided by x to get $\frac{-11}{2}$

It can be written as,

$$\frac{-33}{8} \div x = \frac{-11}{2}$$
$$\Rightarrow x = \frac{-33}{8} \div \frac{-11}{2}$$
$$\Rightarrow x = \frac{-33}{8} \times \frac{2}{-11}$$

$$\Rightarrow x = \frac{-33 \times 2}{8 \times -11}$$
$$\Rightarrow x = \frac{-66}{-88} = \frac{-66 \times -1}{-88 \times -1} = \frac{66}{88}$$
$$\Rightarrow x = \frac{66}{88} = \frac{66 \div 22}{88 \div 22} = \frac{3}{4}$$

Hence, it should be multiplied by is $\frac{3}{4}$

9. Question

Divide the sum of $\frac{13}{5}$ and $\frac{-12}{7}$ by the product of $\frac{-31}{7}$ and $\frac{1}{-2}$.

Answer

Sum of $\frac{13}{5}$ and $\frac{-12}{7}$ - $\frac{13}{5} + \frac{-12}{7}$ $=\frac{13 \times 7 + (-12) \times 5}{35}$ $=\frac{91-60}{35}$ $=\frac{31}{35}$ Product of $\frac{-31}{7}$ and $\frac{1}{-2}$ - $\frac{-31}{7} \times \frac{1}{-2}$ $=\frac{-31\times1}{7\times-2}$ $=\frac{-31}{-14}$

 $=\frac{31}{14}$

Now,

According to the question,

 $\frac{31}{35} \div \frac{31}{14}$ $=\frac{31}{35}\times\frac{14}{31}$ $=\frac{2}{5}$

10. Question

Divide the sum of $\frac{65}{12}$ and $\frac{8}{3}$ by their differ-renice.

According to the question,

$$\begin{pmatrix} \frac{65}{12} + \frac{8}{3} \end{pmatrix} \div \begin{pmatrix} \frac{65}{12} - \frac{8}{3} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{65 \times 1 + 8 \times 4}{12} \end{pmatrix} \div \begin{pmatrix} \frac{65 \times 1 - 8 \times 4}{12} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{65 + 32}{12} \end{pmatrix} \div \begin{pmatrix} \frac{65 - 32}{12} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{97}{12} \end{pmatrix} \div \begin{pmatrix} \frac{33}{12} \end{pmatrix}$$

$$= \frac{97}{12} \times \frac{12}{33}$$

$$= \frac{97}{33}$$

11. Question

Fill in the blanks:

(i)
$$\frac{9}{8} \div (...) = \frac{-3}{2}$$
 (ii) $(...) \div \left(\frac{-7}{5}\right) = \frac{10}{19}$
(iii) $(...) \div (-3) = \frac{-4}{15}$ (iv) $(-12) \div (...) = \frac{-6}{5}$
Answer
(i)
 $\frac{9}{8} \div x(\text{let}) = \frac{-3}{2}$
 $\Rightarrow x = \frac{9}{8} \div \frac{-3}{2}$
 $\Rightarrow x = \frac{9}{8} \times \frac{2}{-3}$
 $\Rightarrow x = \frac{9 \times 2}{8 \times -3}$
 $\Rightarrow x = \frac{18}{-24} = \frac{18 \times -1}{-24 \times -1} = \frac{-18}{24}$
 $\Rightarrow x = \frac{-18}{24} = \frac{-18 \div 6}{24 \div 6} = \frac{-3}{4}$
Therefore,
 $\frac{9}{8} \div \frac{-3}{4} = \frac{-3}{2}$
(ii)

 $x(let) \div \frac{-7}{5} = \frac{10}{19}$

$$\begin{aligned} \Rightarrow x &= \frac{10}{19} \times \frac{-7}{5} \\ \Rightarrow x &= \frac{10 \times -7}{19 \times 5} \\ \Rightarrow x &= \frac{-70}{95} = \frac{-70 \div 5}{95 \div 5} = \frac{-14}{19} \\ \text{Therefore,} \\ &= \frac{-14}{19} \div \frac{-7}{5} = \frac{10}{19} \\ \text{(iii)} \\ x(\text{let}) \div (-3) &= \frac{-4}{15} \\ \Rightarrow x &= \frac{-4}{15} \times (-3) \\ \Rightarrow x &= \frac{-4 \times -3}{15 \times 1} \\ \Rightarrow x &= \frac{12}{15} = \frac{12 \div 3}{15 \div 3} = \frac{4}{5} \\ \text{Therefore,} \\ &= \frac{4}{5} \div (-3) = \frac{-4}{15} \\ \text{(iv)} \\ &= -12 \div x(\text{let}) = \frac{-6}{5} \\ \Rightarrow x &= -12 \times \frac{5}{-6} \\ \Rightarrow x &= \frac{-12 \times 5}{1 \times -6} \\ \Rightarrow x &= \frac{-60}{-6} = \frac{-60 \times -1}{-6 \times -1} = \frac{60}{6} \\ \Rightarrow x &= \frac{60}{6} = \frac{60 \div 6}{6 \div 6} = 10 \end{aligned}$$

Therefore,

$$-12 \div 10 = \frac{-6}{5}$$

12. Question

(i) Are rational numbers always closed under division?

(ii) Are rational numbers always commutative under division?

(iii) Are rational numbers always associative under division?

(iv) Can we divide 1 by 0?

(i) No rational numbers are not always closed under division,

Since, $\frac{a}{a} = \infty$ which is not a rational number

(ii) No rational numbers are not always commutative under division,

Let $\frac{a}{b}$ and $\frac{c}{d}$ be two rational numbers.

 $\frac{a}{b} \div \frac{c}{d} = \frac{ad}{bc}$

And

$$\frac{c}{d} \div \frac{a}{b} = \frac{bc}{ad}$$

Therefore,

 $\frac{a}{b} \div \frac{c}{d} \neq \frac{c}{d} \div \frac{a}{b}$

Hence, rational numbers are not always commutative under division

(iii) No rational numbers are not always associative under division,

Let $\frac{a}{b}$, $\frac{c}{d}$ and $\frac{e}{f}$ be two rational numbers.

$$\frac{a}{b} \div \left(\frac{c}{d} \div \frac{e}{f}\right) = \frac{ade}{bcf}$$

And

$$\left(\frac{a}{b} \div \frac{c}{d}\right) \div \frac{e}{f} = \frac{adf}{bce}$$

Therefore,

$$\frac{a}{b} \div \left(\frac{c}{d} \div \frac{e}{f}\right) \neq \left(\frac{a}{b} \div \frac{c}{d}\right) \div \frac{e}{f}$$

20Ci-Hence, rational numbers are not always associative under division.

(iv) No we cannot divide 1 by 0.

Since, $\frac{a}{a} = \infty$ which is not defined.

Exercise 1F

1. Question

Find a rational number between $\frac{1}{4}$ and $\frac{1}{3}$.

Answer

To find a rational number x between two rational numbers $\frac{a}{b}$ and $\frac{c}{d}$, we use

$$\mathbf{x} = \frac{1}{2} \left(\frac{\mathbf{a}}{\mathbf{b}} + \frac{\mathbf{c}}{\mathbf{d}} \right)$$

Therefore, to find rational number x (let) between $\frac{1}{4}$ and $\frac{1}{3}$

$$x = \frac{1}{2} \left(\frac{1}{4} + \frac{1}{3} \right)$$

$$\Rightarrow x = \frac{1}{2} \left(\frac{1 \times 3 + 1 \times 4}{12} \right)$$

$$\Rightarrow x = \frac{1}{2} \left(\frac{3 + 4}{12} \right)$$

$$\Rightarrow x = \frac{1}{2} \times \frac{7}{12}$$

$$\Rightarrow x = \frac{7}{24}$$

2. Question

Find a rational number between 2 and 3.

Answer

To find a rational number x between two rational numbers $\frac{a}{b}$ and $\frac{c}{d}$, we use

$$\mathbf{x} = \frac{1}{2} \left(\frac{\mathbf{a}}{\mathbf{b}} + \frac{\mathbf{c}}{\mathbf{d}} \right)$$

Therefore, to find rational number x (let) between 2 and 3

$$x = \frac{1}{2}(2 + 3)$$
$$\Rightarrow x = \frac{1}{2} \times 5$$
$$\Rightarrow x = \frac{5}{2}$$

3. Question

Find a rational number between and -

Answer

To find a rational number x between two rational numbers $\frac{a}{b}$ and $\frac{c}{d}$, we use

$$\mathbf{x} = \frac{1}{2} \left(\frac{\mathbf{a}}{\mathbf{b}} + \frac{\mathbf{c}}{\mathbf{d}} \right)$$

Therefore, to find rational number x (let) between $\frac{-1}{3}$ and $\frac{1}{2}$

$$x = \frac{1}{2} \left(\frac{-1}{3} + \frac{1}{2} \right)$$
$$\Rightarrow x = \frac{1}{2} \left(\frac{-1 \times 2 + 1 \times 3}{6} \right)$$
$$\Rightarrow x = \frac{1}{2} \left(\frac{-2 + 3}{6} \right)$$
$$\Rightarrow x = \frac{1}{2} \times \frac{1}{6}$$
$$\Rightarrow x = \frac{1}{12}$$

Find two rational numbers between -3 and -2.

Answer

To find a rational number x between two rational numbers $\frac{a}{b}$ and $\frac{c}{d}$, we use

$$\mathbf{x} = \frac{1}{2} \left(\frac{\mathbf{a}}{\mathbf{b}} + \frac{\mathbf{c}}{\mathbf{d}} \right)$$

Therefore, to find rational number x (let) between -3 and -2

$$x = \frac{1}{2}(-3 + (-2))$$

$$\Rightarrow x = \frac{1}{2}(-3 - 2)$$

$$\Rightarrow x = \frac{1}{2}(-5)$$

$$\Rightarrow x = \frac{-5}{2}$$

Now if we find a rational number between $\frac{-5}{2}$ and -2 it will also be between -3 and -2 since $\frac{-5}{2}$ lies between -3 and -2

OOIII.

Therefore, to find rational number y (let) between $\frac{-5}{2}$ and -2

$$y = \frac{1}{2} \left(\frac{-5}{2} + (-2) \right)$$
$$\Rightarrow y = \frac{1}{2} \left(\frac{-5}{2} - 2 \right)$$
$$\Rightarrow y = \frac{1}{2} \left(\frac{-5 - 4}{2} \right)$$
$$\Rightarrow y = \frac{-9}{4}$$

5. Question

Find three rational numbers between 4 and 5.

Answer

To find a rational number x between two rational numbers $\frac{a}{b}$ and $\frac{c}{d}$, we use

$$\mathbf{x} = \frac{1}{2} \left(\frac{\mathbf{a}}{\mathbf{b}} + \frac{\mathbf{c}}{\mathbf{d}} \right)$$

Therefore, to find rational number x (let) between 4 and 5

$$x = \frac{1}{2}(4+5)$$
$$\Rightarrow x = \frac{1}{2} \times 9$$

$$\Rightarrow x = \frac{9}{2}$$

Now if we find a rational number between 4 and $\frac{9}{2}$ it will also be between 4 and 5 since $\frac{9}{2}$ lies between 4 and 5 Therefore, to find rational number y (let) between 4 and $\frac{9}{2}$

$$y = \frac{1}{2} \left(4 + \frac{9}{2} \right)$$
$$\Rightarrow y = \frac{1}{2} \left(\frac{8+9}{2} \right)$$
$$\Rightarrow y = \frac{1}{2} \times \frac{17}{2}$$
$$\Rightarrow y = \frac{17}{4}$$

Now if we find a rational number between $\frac{9}{2}$ and 5 it will also be between 4 and 5 since $\frac{9}{2}$ lies between 4 and 5 Therefore, to find rational number z (let) between $\frac{9}{2}$ and 5

$$z = \frac{1}{2} \left(\frac{9}{2} + 5\right)$$

$$\Rightarrow z = \frac{1}{2} \left(\frac{9+10}{2}\right)$$

$$\Rightarrow z = \frac{1}{2} \times \frac{19}{2}$$

$$\Rightarrow z = \frac{19}{4}$$

6. Question
Find three rational numbers between $\frac{2}{3}$ and $\frac{3}{4}$.

Answer

-

(

To find a rational number x between two rational numbers $\frac{a}{b}$ and $\frac{c}{d}$, we use

$$\mathbf{x} = \frac{1}{2} \left(\frac{\mathbf{a}}{\mathbf{b}} + \frac{\mathbf{c}}{\mathbf{d}} \right)$$

Therefore, to find rational number x (let) between $\frac{2}{3}$ and $\frac{3}{4}$

$$x = \frac{1}{2} \left(\frac{2}{3} + \frac{3}{4} \right)$$
$$\Rightarrow x = \frac{1}{2} \left(\frac{8+9}{12} \right)$$
$$\Rightarrow x = \frac{1}{2} \times \frac{17}{12}$$
$$\Rightarrow x = \frac{17}{24}$$

Now if we find a rational number between $\frac{2}{3}$ and $\frac{17}{24}$ it will also be between $\frac{2}{3}$ and $\frac{3}{4}$ since $\frac{17}{24}$ lies between $\frac{2}{3}$ and $\frac{3}{4}$. Therefore, to find rational number y (let) between $\frac{2}{3}$ and $\frac{17}{24}$.

$$y = \frac{1}{2} \left(\frac{2}{3} + \frac{17}{24} \right)$$
$$\Rightarrow y = \frac{1}{2} \left(\frac{16 + 17}{24} \right)$$
$$\Rightarrow y = \frac{1}{2} \times \frac{33}{24}$$
$$\Rightarrow y = \frac{33}{48}$$

Now if we find a rational number between $\frac{17}{24}$ and $\frac{3}{4}$ it will also be between $\frac{2}{3}$ and $\frac{3}{4}$ since $\frac{17}{24}$ lies between $\frac{2}{3}$ and $\frac{3}{4}$. Therefore, to find rational number z (let) between $\frac{17}{24}$ and $\frac{3}{4}$.

 $z = \frac{1}{2} \left(\frac{17}{24} + \frac{3}{4} \right)$ $\Rightarrow z = \frac{1}{2} \left(\frac{17 + 18}{24} \right)$ $\Rightarrow z = \frac{1}{2} \times \frac{35}{24}$ $\Rightarrow z = \frac{35}{48}$

7. Question

Find 10 rational numbers between $\frac{-3}{1}$ and $\frac{5}{2}$

Answer

We can write
$$\frac{-3}{4}$$
 as $\frac{-9}{12}$ (Since, $\frac{-3}{4} = \frac{-3 \times 3}{4 \times 3} = \frac{-9}{12}$)

And,

We can write $\frac{5}{6}$ as $\frac{10}{12}$ (Since, $\frac{5}{6} = \frac{5 \times 2}{6 \times 2} = \frac{10}{12}$)

Now clearly, rational numbers between them are,

 $\frac{-8}{12}, \frac{-7}{12}, \frac{-7}{12}, \frac{-6}{12}, \frac{-5}{12}, \frac{-4}{12}, \frac{-3}{12}, \frac{-2}{12}, \frac{-1}{12}, 0, \frac{1}{12}, \frac{2}{12}, \frac{3}{12}, \frac{4}{12}, \frac{5}{12}, \frac{6}{12}, \frac{7}{12}, \frac{8}{12} \text{ and } \frac{9}{12}$

Any 10 rational numbers are,

 $\frac{-8}{12}, \frac{-7}{12}, \frac{-7}{12}, \frac{-6}{12}, \frac{-5}{12}, \frac{-4}{12}, \frac{-3}{12}, \frac{-2}{12}, \frac{-1}{12}, 0, \text{ and } \frac{1}{12}$

8. Question

Find 12 rational numbers between -1and 2.

Answer

We can write
$$-1$$
 as $\frac{-10}{10}$ (Since, $\frac{-1}{1} = \frac{-1 \times 10}{1 \times 10} = \frac{-10}{10}$)

And,

We can write 2 as $\frac{20}{10}$ (Since, $2 = \frac{2 \times 10}{1 \times 10} = \frac{20}{10}$)

Now clearly any 12 rational numbers between -1 and 2 are,

 $\frac{-9}{10}, \frac{-8}{10}, \frac{-7}{10}, \frac{-6}{10}, \frac{-5}{10}, \frac{-4}{10}, \frac{-3}{10}, \frac{-2}{10}, \frac{-1}{10}, 0, \frac{1}{10} \text{ and } \frac{2}{10}$

Exercise 1G

1. Question

From a rope 11 m long. two pieces of lengths $2\frac{3}{5}$ m and $3\frac{3}{10}$ m are cut off. What is the length of remaining

rope?

Answer

Length of rope = 11 m

Length of first piece cut = $2\frac{3}{5}$ m

Length of second piece cut = $3\frac{3}{10}$ m

Total length cut = Length of first piece cut + Length of second piece cut $\frac{2}{3}$ Le C

 $=2\frac{3}{5}m+3\frac{3}{10}m$ $=\frac{13}{5}m+\frac{33}{10}m$ $=\frac{26+33}{10}$ m = ⁵⁹m

Length of remaining rope = Length of rope - Total length cut

$$= 11m - \frac{59}{10}m$$
$$= \frac{110 - 59}{10}m$$
$$= \frac{51}{10}m$$
$$= 5\frac{1}{10}m$$

Hence, Length of remaining rope = $5\frac{1}{10}$ m

2. Question

A drum full of rice weight $40\frac{1}{6}$ kg. If the empty drum weight $13\frac{3}{4}$ kg. Find the weight of rice in the drum.

Answer

Weight of drum full of rice = $40\frac{1}{6}$ kg

Weight of empty drum = $13\frac{3}{4}$ kg

Weight of rice Weight of drum full of rice - Weight of empty drum

$$= 40 \frac{1}{6} \text{kg} - 13 \frac{3}{4} \text{kg}$$
$$= \frac{241}{6} \text{kg} - \frac{55}{4} \text{kg}$$
$$= \frac{482 - 165}{12} \text{kg}$$
$$= \frac{317}{12} \text{kg}$$
$$= 26 \frac{5}{12} \text{kg}$$

Hence, Weight of rice = $26\frac{5}{12}$ kg

3. Question

A basket contains three types of fruits weight $19\frac{1}{3}$ kg in all. If $8\frac{1}{9}$ kg of these be apples, $3\frac{1}{6}$ kg be oranges and the rest pears, what is the weight of the pears in the basket?

Answer

Weight of basket with three types of fruits = $19\frac{1}{3}$ kg

Weight of apples = $8\frac{1}{9}$ kg

Weight of oranges = $3\frac{1}{6}$ kg

Weight of pears = Weight of basket with three types of fruits - (Weight of apples + Weight of oranges)

$$= 19\frac{1}{3}kg - (8\frac{1}{9}kg + 3\frac{1}{6}kg)$$

$$= \frac{58}{3}kg - (\frac{73}{9}kg + \frac{19}{6}kg)$$

$$= \frac{58}{3}kg - (\frac{146 + 57}{18}kg)$$

$$= \frac{58}{3}kg - \frac{203}{18}kg$$

$$= \frac{348 - 203}{18}kg$$

$$= \frac{145}{18}kg$$

$$= 8\frac{1}{18}kg$$

Hence, Weight of pears = $8\frac{1}{18}$ kg

4. Question

On one day a rickshaw puller earned Rs. 160. Out of his earnings he spent $26\frac{3}{5}$ on tea and snacks, Rs. $50\frac{1}{2}$

on food and Rs. $16\frac{2}{5}$ on repairs of the rickshaw. How much did he save on that day?

Answer

- Total Earnings = Rs 160
- Spend on tea and snacks = Rs $26\frac{3}{5}$
- Spend on food = $\operatorname{Rs} 50\frac{1}{2}$
- Spend on repairs = Rs $16\frac{2}{5}$

Total Expenditure = Spend on tea and snacks + Spend on food + Spend on repairs

$= \operatorname{Rs} 26\frac{3}{5} + \operatorname{Rs} 50\frac{1}{2} + \operatorname{Rs} 16\frac{2}{5}$
$= \operatorname{Rs} \frac{133}{5} + \operatorname{Rs} \frac{101}{2} + \operatorname{Rs} \frac{82}{5}$
$= \text{Rs} \ \frac{266 + 505 + 164}{10}$
$= \operatorname{Rs} \frac{935}{10}$
Savings= Total Earnings - Total Expenditure
$= \text{Rs } 160 - \text{Rs } \frac{935}{10}$
$= \text{Rs} \frac{1600 - 935}{10}$
$= \operatorname{Rs} \frac{665}{10}$
$= \operatorname{Rs} 66\frac{1}{2}$
Hence, Savings = Rs $66\frac{1}{2}$
5. Question
Find the cost of $3\frac{2}{5}$ meters of cloth at Rs. $63\frac{3}{4}$ per meter.

Answer

Cost of cloth per meter = $Rs 63\frac{3}{4}$

Total meters = $3\frac{2}{5}$ m

Cost of total cloth = Cost of cloth per meter × Total meters

 $= \operatorname{Rs} 63\frac{3}{4} \times 3\frac{2}{5}\mathrm{m}$

$$= \operatorname{Rs} \frac{255}{4} \times \frac{17}{5}$$
$$= \operatorname{Rs} \frac{4335}{20} = \frac{4335 \div 5}{20 \div 5} = \frac{867}{4}$$
$$= \operatorname{Rs} 216\frac{3}{4}$$

Therefore, total cost = $Rs 216\frac{3}{4}$

6. Question

A car is moving at an average speed of $60\frac{2}{5}$ km/hr. How much distance will it cover in $6\frac{1}{4}$ hours?

Answer

Speed of car = $60\frac{2}{5}$ km/hr Total hours = $6\frac{1}{4}$ hrs $= 377 \frac{1}{2} \text{km}$ Therefore, Total Distance = $377 \frac{1}{2} \text{km}$ To Question
ind the area of a rectanor.

Length of park = $36\frac{3}{5}$ m Breadth of park = $16\frac{2}{3}$ m

Area of park = Length of park × Breadth of park

$$= 36\frac{3}{5} \text{m} \times 16\frac{2}{3} \text{m}$$
$$= \frac{183}{5} \text{m} \times \frac{50}{3} \text{m}$$
$$= \frac{183 \times 50}{5 \times 3} \text{m}$$

$$=\frac{9150}{15}$$
m²

 $= 610 \text{ m}^2$

Hence, Area of park $= 610 \text{ m}^2$

8. Question

Find the area of square plot of land whose each side measure $8\frac{1}{2}$ meters.

Answer

Side of plot = $8\frac{1}{2}m$

Area of plot = Side of plot \times Side of plot

$$= 8\frac{1}{2}m \times 8\frac{1}{2}m$$
$$= \frac{17}{2}m \times \frac{17}{2}m$$
$$= \frac{17 \times 17}{2 \times 2}m$$
$$= \frac{289}{4}m^{2}$$
$$= 72\frac{1}{4}m^{2}$$

Hence, Area of plot = $72\frac{1}{4}$ m²

9. Question

One liters of petrol costs Rs. $63\frac{3}{4}$. What is the cost of 34 liters of petrol?

ka. on

Answer

Cost of one litre petrol = Rs $63\frac{3}{4}$ = Rs $\frac{255}{4}$

Cost of 34 litre petrol = $34 \times Cost$ of one litre petrol

$$= 34 \times \text{Rs} \frac{255}{4}$$
$$= \text{Rs} \frac{34 \times 255}{4}$$
$$= \text{Rs} \frac{8670}{4}$$
$$= \text{Rs} \frac{4335}{2}$$
$$= \text{Rs} 2167 \frac{1}{2}$$

Cost of 34 litre petrol = Rs 2167 $\frac{1}{2}$

An aeroplane covers 1020 km in an hour. How much distance will it cover in $4\frac{1}{2}$ hours?

Answer

Distance covered in one hour = 1020 km

Distance covered in $4\frac{1}{6}$ hours = $4\frac{1}{6} \times$ Distance covered in one hour

$$= 4\frac{1}{6} \times 1020 \text{ km}$$
$$= \frac{25}{6} \times 1020 \text{ km}$$
$$= \frac{25 \times 1020}{6} \text{ km}$$
$$= \frac{25500}{6} \text{ km}$$

= 4250 km

Distance covered in $4\frac{1}{6}$ hours = 4250 km

11. Question

The cost of $3\frac{1}{2}$ meters of cloth is Rs. $166\frac{1}{4}$. What is the cost of one metre of cloth?

Answer

Cost of $3\frac{1}{2}$ m of cloth = Rs $166\frac{1}{4}$

Cost of 1m of cloth = Cost of $3\frac{1}{2}$ m of cloth ÷ $3\frac{1}{2}$

$$= \operatorname{Rs} 166 \frac{1}{4} \div 3\frac{1}{2}$$
$$= \operatorname{Rs} \frac{665}{4} \div \frac{7}{2}$$
$$= \operatorname{Rs} \frac{665}{4} \times \frac{2}{7}$$
$$= \operatorname{Rs} \frac{1330}{28}$$
$$= \operatorname{Rs} 47\frac{1}{2}$$

Cost of 1m of cloth= Rs 47 $\frac{1}{2}$

12. Question

A cord of length $71\frac{1}{2}$ m has been cut into 26 pieces of equal length. What is the length of each piece?

Answer

Length of cord = $71\frac{1}{2}$ m

No of pieces = 26

Length of each piece = Length of cord ÷ No of pieces

 $=71\frac{1}{2}m \div 26$ $=\frac{143}{2}m \div 26$ $=\frac{143}{2}$ m $\times \frac{1}{26}$ $=\frac{143}{2}$ m $\times \frac{1}{26}$ $=\frac{143}{2\times26}$ m $=\frac{143}{52}$ m $=\frac{11}{4}m$ $=2\frac{3}{4}m$ Length of each piece= $2\frac{3}{4}$ m

13. Question

The area of a room is $65\frac{1}{4}m^2$. If its breadth is 5 meters, what is its length?

Answer

Area of room = $65\frac{1}{4}$ m²

Breadth of room = $5\frac{7}{16}$ m

Length of room = Area of room + Breadth of room

$$= 65 \frac{1}{4} \text{m}^{2} \div 5 \frac{7}{16} \text{m}$$
$$= \frac{261}{4} \text{m}^{2} \div \frac{87}{16} \text{m}$$
$$= \frac{261}{4} \text{m}^{2} \times \frac{16}{87} \text{m}$$
$$= \frac{4176}{348} \text{m}$$
$$= 12 \text{ m}$$

Length of room= 12 m

14. Question

The product of two fractions is $9\frac{3}{5}$. If one of the fractions is $9\frac{3}{7}$, find the other.

Answer

Product of two fractions = $9\frac{3}{5}$

First fraction = $9\frac{3}{7}$

Second fraction = Product of two fractions ÷ First fraction

 $=9\frac{3}{5} \div 9\frac{3}{7}$ $=\frac{48}{5} \div \frac{66}{7}$ $=\frac{48}{5} \times \frac{7}{66}$ $=\frac{336}{330}$ $=\frac{56}{55}$ $=1\frac{1}{55}$

Second fraction = $1\frac{1}{55}$

15. Question

In a school, $\frac{5}{8}$ of the students are boys. If there are 240 girls, find the number of boys in the school.

Answer

Fraction of boys $=\frac{5}{8}$ Fraction of girls $=1-\frac{5}{8}=\frac{3}{8}$ Number of girls =240Number of girls = Total students $\times \frac{3}{8}$ $\Rightarrow 240 =$ Total students $\times \frac{3}{8}$ \Rightarrow Total students $= 240 \div \frac{3}{8}$ $= 240 \times \frac{8}{3}$ $= \frac{240 \times 8}{3}$ $= \frac{1920}{3} = 640$ Total students = 640 Number of boys = Total students - Number of girls

=640 - 240 = 400

Number of boys= 400

16. Question

After reading $\frac{7}{9}$ of a book, 40 pages are left. How many pages are there in the book?

Answer

Fraction read $=\frac{7}{3}$ Fraction left = $1 - \frac{7}{9} = \frac{2}{9}$ Pages left = 40Pages left = $\frac{2}{9}$ xTotal pages $40 = \frac{2}{3} \times \text{Total pages}$ 2.01 ⇒ Total pages = $40 \div \frac{2}{9}$ $=40 \times \frac{9}{2}$ = 180Total pages = 180 17. Question Rita had Rs. 300. She spent $\frac{1}{3}$ of her money on notebooks and $\frac{1}{4}$ of the remainder on stationary items. How much money is left with her? Answer Total money = Rs 300 Fraction spent on notebooks $=\frac{1}{2}$ Amount spent on notebooks = $\frac{1}{3} \times 300$ = Rs 100 Amount left = Rs 300 - Rs 100 = Rs 200 Fraction spent on stationary $=\frac{1}{2}$ Amount spent on stationary = $\frac{1}{4} \times 200$ = Rs 50 Money left = Rs 300 - Rs 150 = Rs 150 18. Question Amit earns Rs. 32000 per month. He spends $\frac{1}{4}$ of his income on food; $\frac{3}{10}$ of the remainder on house rent and

 $\frac{5}{21}$ of the remainder on the education of children. How much money is still left with him?

Total earnings = Rs 32000 Amount spend on food $=\frac{1}{4} \times \text{Rs} 32000 = \text{Rs} 8000$ Amount left = Rs 32000 - Rs 8000 = Rs 24000 Amount spend on house rent = $\frac{3}{10} \times \text{Rs} 24000 = \text{Rs} 7200$ Amount left = Rs 24000- Rs 7200 = Rs 16800 Amount spend on education = $\frac{5}{21} \times \text{Rs } 16800 = \text{Rs } 4000$ Amount left = Rs 16800 - Rs 4000 = Rs 12800 Money left = Rs 12800

19. Question

If $\frac{3}{5}$ of a number exceeds its $\frac{2}{7}$ by 44 , find the number.

Answer

Let the number be x

$$\frac{3}{5} \text{ of } x = \frac{3}{5} x$$
$$\frac{2}{7} \text{ of } x = \frac{2}{7} x$$

According to the question,

= 44

$$\frac{3}{5}x - \frac{2}{7}x = 44$$

$$\Rightarrow \frac{3x \times 7 - 2x \times 5}{35}$$

$$\Rightarrow \frac{21x - 10x}{35} = 44$$

$$\Rightarrow \frac{11}{35} \times x = 44$$

$$\Rightarrow x = 44 \div \frac{11}{35}$$

$$\Rightarrow x = 44 \times \frac{35}{11}$$

$$\Rightarrow x = \frac{1540}{11}$$

$$\Rightarrow x = 140$$

The number is 140

20. Question

At a cricket test match $\frac{2}{7}$ of the spectators were in a covered place while 15000 were in open. Find the total number of spectators.

Fraction of spectators covered $=\frac{2}{7}$ Fraction left = $1 - \frac{2}{7} = \frac{7-2}{7} = \frac{5}{7}$ Number of spectators in open = 15000 According to the question, Number of spectators in open = Total number of spectators $\times \frac{5}{7}$ $\Rightarrow 15000 = \frac{5}{7} \times \text{Total number of spectators}$ \Rightarrow Total number of spectators = 15000 $\div \frac{5}{7}$

 \Rightarrow Total number of spectators = 15000 $\times \frac{7}{5}$

 \Rightarrow Total number of spectators = 21000

Exercise 1H

1. Question

$$\left(\frac{-5}{16} + \frac{7}{12}\right) = ?$$

Options A. $-\frac{7}{48}$

c. $\frac{13}{48}$

Answer

 $\frac{-5}{16} + \frac{7}{12}$ LCM of 12 and 16 = 48

 $=\frac{-5\times3+7\times4}{48}$ $=\frac{-15+28}{48}$ $=\frac{13}{48}$

2. Question

$$\left(\frac{8}{-15} + \frac{4}{-3}\right) = ?$$
Options A. $\frac{28}{15}$
B. $\frac{-28}{15}$
C. $\frac{-4}{5}$
D. $\frac{-4}{15}$

 $\frac{8}{-15} = \frac{8 \times -1}{-15 \times -1} = \frac{-8}{15}$ And, $\frac{4}{-3} = \frac{4 \times -1}{-3 \times -1} = \frac{-4}{3}$ $\Rightarrow \frac{8}{-15} + \frac{4}{-3} = \frac{-8}{15} + \frac{-4}{3}$ $=\frac{-8 \times 3 + (-4) \times 15}{45}$ $=\frac{-24-60}{45}$ $=\frac{-84}{45}=\frac{-84\div 3}{45\div 3}=\frac{-28}{15}$ 3. Question $\left(\frac{7}{-26} + \frac{16}{39}\right) = ?$

Options A. $\frac{11}{78}$ в. <u>-11</u> 78 c. $\frac{11}{39}$ D. $\frac{-11}{39}$

Answer

$$\frac{7}{-26} = \frac{7 \times -1}{-26 \times -1} =$$

$$\Rightarrow \frac{7}{-26} + \frac{16}{39} = \frac{-7}{26} + \frac{16}{39} = \frac{-7}{26} + \frac{16}{78} = \frac{-7 \times 3 + 16 \times 2}{78}$$

$$= \frac{-21 + 32}{78}$$

$$= \frac{11}{78}$$

 $\frac{-7}{26}$

16 39

4. Question

$$\left(3+\frac{5}{-7}\right) = ?$$

Options A. $\frac{-16}{7}$

c.
$$\frac{-26}{7}$$

D.
$$\frac{-8}{7}$$

Answer

$$3 = \frac{3}{1}$$

$$\frac{5}{-7} = \frac{5 \times -1}{-7 \times -1} = \frac{-5}{7}$$

$$\Rightarrow 3 + \frac{5}{-7} = \frac{3}{1} + \frac{-5}{7}$$

$$= \frac{3 \times 7 + (-5) \times 1}{7}$$

$$= \frac{21 - 5}{7}$$

$$= \frac{16}{7}$$

5. Question

$$\left(\frac{31}{-4} + \frac{-5}{8}\right) = ?$$
Options A. $\frac{67}{8}$

B.
$$\frac{57}{8}$$

c. $\frac{-57}{8}$
D. $\frac{-67}{8}$

 $\frac{31}{-4} = \frac{31 \times -1}{-4 \times -1} = \frac{-31}{4}$ $\Rightarrow \frac{31}{-4} + \frac{-5}{8} = \frac{-31}{4} + \frac{-5}{8}$ $=\frac{-31 \times 2 + (-5) \times 1}{8}$ $=\frac{-62-5}{8}$ $=\frac{-67}{8}$

6. Question

What should be added to $\frac{7}{12}$ to get $\frac{-4}{15}$?

Options A.
$$\frac{17}{20}$$

c.
$$\frac{7}{20}$$

D. $\frac{-7}{20}$

Answer

Let the number added be x.

Then,

$$\frac{7}{12} + x = \frac{-4}{15}$$
$$\Rightarrow x = \frac{-4}{15} - \frac{7}{12}$$
$$= \frac{-4 \times 4 - 7 \times 5}{60}$$

$$=\frac{-16-35}{8}$$
$$=\frac{-51}{60}=\frac{-51\div 3}{60\div 3}=\frac{-17}{20}$$

 $\left(\frac{2}{3} + \frac{-4}{5} + \frac{7}{15} + \frac{-11}{20}\right) = ?$ Options A. $\frac{-1}{5}$ B. $\frac{-4}{15}$ c. $\frac{-13}{60}$ $I_{15} = \frac{-1}{20}$ LCM of 3, 5, 15, 20 $= \frac{2 \times 20 + (-4) \times 12 + 7 \times 4 + (-11) \times 3}{60}$ $= \frac{40 - 48 + 28 - 33}{60}$ $= \frac{68 - 81}{60}$ $= \frac{-31}{60}$ Question

The sum of two numbers is
$$\frac{-4}{7}$$
 to get $\frac{5}{6}$?

Options A. $\frac{5}{2}$

в. <u>3</u> 2 c. $\frac{5}{4}$

D.
$$\frac{-5}{2}$$

Let the number added be x.

Then,

 $\frac{5}{6} + x = \frac{-4}{7}$ $\Rightarrow x = \frac{-4}{7} - \frac{5}{6}$ $=\frac{-4\times 6-5\times 7}{42}$ $=\frac{-24-35}{42}$ $=\frac{-59}{42}$

9. Question

What should be added to $\frac{-5}{7}$ to get $\frac{-2}{3}$? Options A. $\frac{-29}{21}$ в. <u>29</u> 21 c. $\frac{1}{21}$ D. $\frac{-1}{21}$

Answer

Let the number added be x.

Then.

 $\frac{-5}{7} + x = \frac{-2}{3}$ $\Rightarrow x = \frac{-2}{3} - \frac{-5}{7}$ $=\frac{-2 \times 7 - (-5) \times 3}{21}$ $=\frac{-14+15}{21}$ $=\frac{1}{21}$

What should be subtracted from $\frac{-5}{3}$ to get $\frac{5}{6}$?

Options A. $\frac{5}{2}$

B.
$$\frac{3}{2}$$

C. $\frac{5}{2}$

Answer

Let the number subtracted be x.

Then,

$$\frac{-5}{3} - x = \frac{5}{6}$$

$$\Rightarrow x = \frac{-5}{3} - \frac{5}{6}$$

$$= \frac{-5 \times 2 - 5 \times 1}{6}$$

$$= \frac{-10 - 5}{6}$$

$$= \frac{-15}{6} = \frac{-15 \div 3}{6 \div 3} = \frac{-5}{2}$$

11. Question

$$\left(\frac{-3}{7}\right)^{-1} = ?$$

Options A. $\frac{7}{3}$

B.
$$\frac{-7}{3}$$

c.
$$\frac{3}{7}$$

D. none of these

Answer

We know, For any real number $a \neq 0, a^{-1} = \frac{1}{a}$ So, $\left(\frac{-3}{7}\right)^{-1} = \frac{7}{-3} = \frac{7 \times -1}{-3 \times -1} = \frac{-7}{3}$

The product of two rational numbers is $\frac{-28}{81}$. If one of the numbers is $\frac{14}{27}$ then the other one is Options A. $\frac{-2}{3}$ в. <u>2</u> 3 c. $\frac{3}{2}$ D. $\frac{-3}{2}$ e of the Answer Let the other number be x. Then, $\frac{14}{27} \times x = \frac{-28}{81}$ $\Rightarrow x = \frac{-28}{81} \div \frac{14}{27}$ $\Rightarrow x = \frac{-28}{81} \times \frac{27}{14}$ $\Rightarrow x = \frac{-756}{1134} = \frac{-756 \div 378}{1134 \div 378} = \frac{-2}{3}$ 13. Question The product of two numbers is $\frac{-16}{35}$. If one of the numbers is $\frac{-15}{14}$, the other is Options A. $\frac{-2}{5}$ B. $\frac{8}{15}$

c.
$$\frac{32}{75}$$

D. $\frac{-8}{3}$

Answer

Let the other number be x.

Then,

$$\frac{-15}{14} \times x = \frac{-16}{35}$$

$$\Rightarrow x = \frac{-16}{35} \div \frac{-15}{14}$$

$$\Rightarrow x = \frac{-16}{35} \times \frac{14}{-15}$$

$$\Rightarrow x = \frac{-224}{-525} = \frac{-224 \times -1}{-525 \times -1} = \frac{224}{525}$$

$$\Rightarrow x = \frac{224}{525} = \frac{224 \div 7}{525 \div 7} = \frac{32}{75}$$

What should be subtracted from
$$\frac{-3}{5}$$
 to get $-2?$

Options A.
$$\frac{-7}{5}$$

B. $\frac{-13}{5}$
C. $\frac{13}{5}$
D. $\frac{7}{5}$
Answer
Let the number subtracted be x.
Then,
 $\frac{-3}{5} - x = \frac{-2}{1}$
 $\Rightarrow x = \frac{-3}{5} - \frac{-2}{1}$
 $\Rightarrow x = \frac{-3 \times 1 - (-2) \times 5}{5}$
 $\Rightarrow x = \frac{-3 \pm 10}{5}$
 $\Rightarrow x = \frac{7}{5}$

15. Question

The sum of two rational numbers is -3. If one of them is $\frac{-10}{3}$ then the other one is

Options A. $\frac{-13}{3}$

B.
$$\frac{-19}{3}$$

c. $\frac{1}{3}$
d. $\frac{13}{3}$

Let the other number be x.

Then,

$$\frac{-10}{3} + x = \frac{-3}{1}$$

$$\Rightarrow x = \frac{-3}{1} - \frac{-10}{3}$$

$$\Rightarrow x = \frac{-3 \times 3 - (-10) \times 1}{3}$$

$$\Rightarrow x = \frac{-9 + 10}{3}$$

$$\Rightarrow x = \frac{1}{3}$$
16. Question
Which of the following numbers is in standard form?
Options A. $\frac{-12}{26}$
B. $\frac{-49}{71}$
C. $\frac{-9}{16}$

c.
$$\frac{-9}{16}$$

D.
$$\frac{28}{-105}$$

Answer

 $\frac{-12}{26}$ is not in standard form since 12 and 26 have a common divisor 2.

 $\frac{28}{-105}$ is not in standard form since its denominator is negative.

Therefore, only $\frac{-49}{71}$ and $\frac{-9}{16}$ are in standard forms as their numerator and denominator have no common divisor and their denominators are positive.

17. Question

$\left(\frac{-9}{16} \times \frac{8}{15}\right) = ?$
Options A. $\frac{-3}{10}$
в. <u>-4</u> 15
c. $\frac{-9}{25}$
D. $\frac{-2}{5}$
Answer

$\frac{-9}{16} \times \frac{8}{15}$	
$=\frac{-9\times8}{16\times15}$	
$=\frac{-72}{240}=\frac{-72\div24}{240\div24}=\frac{-3}{10}$	

$\left(\frac{-5}{-5}\right)$	$\frac{2}{2}$	=?
9	3)	

Options A.
$$\frac{-5}{2}$$

B.
$$\frac{-5}{6}$$

c.
$$\frac{-10}{27}$$

D. $\frac{-6}{5}$

Answer

 $\frac{-5}{9} \div \frac{2}{3}$ $=\frac{-5}{9}\times\frac{3}{2}$ $=\frac{-5\times3}{9\times2}$ $=\frac{-15}{18}=\frac{-15\div 3}{18\div 3}=\frac{-5}{6}$

 $\frac{-32}{45}$

$$\frac{4}{9} \div ? = \frac{-18}{15}$$
Options A. $\frac{-3}{4}$
B. $\frac{-8}{5}$
C. $\frac{-9}{10}$
D. -5

Answer

-5 $\frac{4}{9} \div x = \frac{-8}{15}$ $\Rightarrow x = \frac{4}{9} \div \frac{-8}{15}$ $\Rightarrow x = \frac{4}{9} \times \frac{15}{-8}$ $\Rightarrow x = \frac{4 \times 15}{9 \times -8}$ $\Rightarrow x = \frac{60}{-72} = \frac{60 \times -1}{-72 \times -1} = \frac{-60}{72}$ $\Rightarrow x = \frac{-60}{72} = \frac{-60 \div 6}{72 \div 6} = \frac{-5}{6}$ 20. Question Additive inverse of $\frac{-5}{9}$ is

Options A. $\frac{-9}{5}$

B. ()

D. $\frac{9}{5}$

Answer

Additive inverse of a number $\frac{a}{b}$ is the number $-\frac{a}{b}$ such that, $\frac{a}{b} + \left(\frac{-a}{b}\right) = 0$

Therefore,

Additive inverse of $\frac{-5}{9}$ is $\frac{5}{9}$

21. Question

Reciprocal of $\frac{-3}{4}$ is

Options A. $\frac{4}{3}$

C.
$$\frac{-4}{3}$$

D. 0

3 ... Question A rational number between $\frac{-2}{3}$ and $\frac{1}{4}$ is Options A. $\frac{5}{2}$ $\frac{-5}{12}$ $\frac{5}{24}$

B.
$$\frac{-5}{12}$$

$$\frac{1}{24}$$
 -5

D. <u>-</u>24

Answer

Rational number between $\frac{-2}{3}$ and $\frac{1}{4}$

)

$$= \frac{1}{2} \left(\frac{-2}{3} + \frac{1}{4} \right)$$
$$= \frac{1}{2} \left(\frac{-2 \times 4 + 1 \times 3}{12} \right)$$
$$= \frac{1}{2} \left(\frac{-8 + 3}{12} \right)$$

$$=\frac{1}{2} \times \frac{-5}{12}$$
$$=\frac{-5}{24}$$

The reciprocal of a negative rational number

Options A. is a positive rational number

- B. is a negative rational number
- C. can be either a positive or a negative rational number

D. does not exist

Answer

Let $\frac{-a}{b}$ be a negative rational number

Then, its reciprocal will be $\frac{-b}{a}$ which is also a negative rational number.

Hence, the reciprocal of a negative rational number is a negative rational number unb

CCE Test Paper-1

1. Question

Find the additive inverse of(i) $\frac{7}{-10}$ (ii) $\frac{8}{5}$.

Answer

Additive inverse of a number $\frac{a}{b}$ is the number $-\frac{a}{b}$ such that, $\frac{a}{b} + \left(\frac{-a}{b}\right) = 0$

Therefore,

(i) $\frac{7}{-10} = \frac{7 \times -1}{-10 \times -1} = \frac{-7}{10}$

Additive inverse of $\frac{-7}{10}$ is $\frac{7}{10}$

(ii) Additive inverse of $\frac{8}{5}$ is $\frac{-8}{5}$

2. Question

The sum of two rational numbers is -4. If one of them is $\frac{-11}{5}$, find the other.

Answer

Sum of two rational numbers = -4

First number = $\frac{-11}{5}$

Second number = Sum of two rational numbers - First number

$$= -4 - \frac{-11}{5}$$
$$= \frac{-20 - (-11)}{5}$$

$$=\frac{-20+11}{5}$$
$$=\frac{-9}{5}$$

Second number = $\frac{-9}{5}$

3. Question

What number should be added to $\frac{-3}{5}$ to get $\frac{2}{3}$?

Answer

Let the number added be x

Then,

$$\frac{-3}{5} + x = \frac{2}{3}$$

$$\Rightarrow x = \frac{2}{3} - \frac{-3}{5}$$

$$\Rightarrow x = \frac{2 \times 5 - (-3) \times 3}{15}$$

$$\Rightarrow x = \frac{10 + 9}{15}$$

$$\Rightarrow x = \frac{19}{15}$$

4. Question

What number should be subtracted from $\frac{-3}{4}$ to get

Answer

Let the number subtracted be x

Then,

$$\frac{-3}{4} - x = \frac{-1}{2}$$

$$\Rightarrow x = \frac{-3}{4} - \frac{-1}{2}$$

$$\Rightarrow x = \frac{-3 \times 1 - (-1) \times 2}{4}$$

$$\Rightarrow x = \frac{-3 + 2}{4}$$

$$\Rightarrow x = \frac{-1}{4}$$

5. Question

Find the multiplicative inverse of (i) $\frac{-3}{4}$ (ii) $\frac{11}{4}$.

Multiplicative inverse of a rational number $\frac{a}{b} = \frac{b}{a}$

Therefore,

(i) Negative inverse of $\frac{-3}{4} = \frac{4}{-3}$

$$\frac{4}{-3} = \frac{4 \times -1}{-3 \times -1} = \frac{-4}{3}$$

(ii) Negative inverse of $\frac{11}{4} = \frac{4}{11}$

6. Question

The product of two numbers is $-8\,.$ If one of them is -12 , find the other.

Answer

Let the other number be x

Then,

$$-12 \times x = -8$$

$$\Rightarrow x = -8 \div -12$$

$$\Rightarrow x = \frac{-8}{-12} = \frac{-8 \times -1}{-12 \times -1} = \frac{8}{12}$$

$$\Rightarrow x = \frac{8}{12} = \frac{8 \div 4}{12 \div 4} = \frac{2}{3}$$

7. Question
Evaluate:
(i) $\frac{-3}{5} \times \frac{10}{7}$ (ii) $\left(\frac{-5}{8}\right)^{-1}$ (iii) $(-6)^{-1}$
Answer
(i)
 $\frac{-3}{5} \times \frac{10}{7}$

$$= \frac{-3 \times 10}{5 \times 7}$$

$$= \frac{-30}{35} = \frac{-30 \div 5}{35 \div 5} = \frac{-6}{7}$$

(ii)
 $\left(\frac{-5}{8}\right)^{-1}$

$$= \frac{8}{-5} = \frac{8 \times -1}{-5 \times -1} = \frac{-8}{5}$$

(iii)
 $(-6)^{-1}$

$$=\frac{1}{-6}=\frac{1\times-1}{-6\times-1}=\frac{-1}{6}$$

Name the property of multiplication shown by each of the following statements:

(i)
$$\frac{-12}{5} \times \frac{3}{4} = \frac{3}{4} \times \frac{-12}{5}$$
 (ii) $\frac{-8}{15} \times 1 = \frac{-8}{15}$
(iii) $\left(\frac{-2}{3} \times \frac{7}{8}\right) \times \frac{-5}{7} = \frac{-2}{3} \times \left(\frac{7}{8} \times \frac{-5}{7}\right)$
(iv) $\frac{-2}{3} \times 0 = 0$
(v) $\frac{2}{5} \times \left(\frac{-4}{5} + \frac{-3}{10}\right) = \left(\frac{2}{5} \times \frac{-4}{5}\right) \times \left(\frac{2}{5} \times \frac{-3}{10}\right)$

Answer

(i) Commutative law of multiplication i.e., a b = b a

(ii) 1 as multiplicative identity i.e., a \times 1 = b \times 1

(iii) Associative law of multiplication i.e., a(bc) = (ab)c

- (iv) Multiplicative property of 0 i.e., $a \times 0=0$
- (v) Distributive law of multiplication over addition i.e., a(b + c) = ab + ac

9. Question

Find two rational numbers lying between and

Answer

Rational number between $\frac{-1}{3}$ and

$$= \frac{1}{2} \left(\frac{-1}{3} + \frac{1}{2} \right)$$
$$= \frac{1}{2} \left(\frac{-1 \times 2 + 1 \times 3}{6} \right)$$
$$= \frac{1}{2} \left(\frac{-2 + 3}{6} \right)$$
$$= \frac{1}{2} \times \frac{1}{6}$$
$$= \frac{1}{12}$$

Now,

Rational number between $\frac{1}{12}$ and $\frac{1}{2}$

 $=\frac{1}{2}\left(\frac{1}{12}+\frac{1}{2}\right)$

$$= \frac{1}{2} \left(\frac{1 \times 1 + 1 \times 6}{12} \right)$$
$$= \frac{1}{2} \left(\frac{1 + 6}{12} \right)$$
$$= \frac{1}{2} \times \frac{7}{12}$$
$$= \frac{7}{24}$$

What should be added to $\frac{-3}{5}$ to get $\frac{-1}{3}$?

Options A. $\frac{4}{5}$

B.
$$\frac{8}{15}$$

c. $\frac{4}{15}$
d. $\frac{2}{5}$

Answer

Let the number added be x

Then,

 $\frac{-3}{5} + x = \frac{-1}{3}$ $\Rightarrow x = \frac{1}{3} - \frac{-3}{5}$ $\Rightarrow x = \frac{-1 \times 5 - (-3) \times 3}{15}$ $\Rightarrow x = \frac{-5 + 9}{15}$ $\Rightarrow x = \frac{4}{15}$

11. Question

What should be added to $\frac{-2}{3}$ to get $\frac{3}{4}$?

Options A. $\frac{-11}{12}$

B.
$$\frac{-13}{12}$$

C. $\frac{-5}{4}$
D. $\frac{17}{12}$

Let the number added be x

Then,

 $\frac{-2}{3} + x = \frac{3}{4}$ $\Rightarrow x = \frac{3}{4} - \frac{-2}{3}$ $\Rightarrow x = \frac{3 \times 3 - (-2) \times 4}{12}$ $\Rightarrow x = \frac{9 + 8}{12}$ $\Rightarrow x = \frac{17}{12}$

12. Question

$$\left(\frac{-5}{4}\right)^{-1} = ?$$

Options A.
$$\frac{4}{5}$$

B.
$$\frac{-4}{5}$$

c.
$$\frac{5}{4}$$

D.
$$\frac{3}{5}$$

Answer

$$\left(\frac{-5}{4}\right)^{-1} = \frac{4}{-5}$$
$$\frac{4}{-5} = \frac{4 \times -1}{-5 \times -1} = \frac{-4}{5}$$

13. Question

The product of two numbers is $\frac{-1}{4}$. If one of them is $\frac{-3}{10}$, then the other is

Options A.
$$\frac{5}{6}$$

B. $\frac{-5}{6}$
C. $\frac{4}{3}$
D. $\frac{-8}{5}$

Let the other number be x

Then,

Then,

$$\frac{-3}{10} \times x = \frac{-1}{4}$$

$$\Rightarrow x = \frac{-1}{4} \div \frac{-3}{10}$$

$$\Rightarrow x = \frac{-1}{4} \times \frac{10}{-3}$$

$$\Rightarrow x = \frac{-1 \times 10}{4 \times -3}$$

$$\Rightarrow x = \frac{-10}{-12} = \frac{-10 \times -1}{-12 \times -1} = \frac{10}{12}$$

$$\Rightarrow x = \frac{10}{12} = \frac{10 \div 2}{12 \div 2} = \frac{5}{6}$$
14. Question

$$\left(\frac{-5}{6} \div \frac{-2}{3}\right) = ?$$
Options A. $\frac{-5}{4}$

14. Question

$$\left(\frac{-5}{6} \div \frac{-2}{3}\right) = ?$$

Options A. $\frac{-5}{4}$

в. <u>5</u> 4

- c. $\frac{-4}{5}$
- D. $\frac{4}{5}$

Answer

 $\frac{-5}{6} \div \frac{-2}{3}$

$$= \frac{-5}{6} \times \frac{3}{-2}$$
$$= \frac{-5 \times 3}{6 \times -2}$$
$$= \frac{-15}{-12} = \frac{-15 \times -1}{-12 \times -1} = \frac{15}{12}$$
$$= \frac{15}{12} = \frac{15 \div 3}{12 \div 3} = \frac{5}{4}$$

 $\frac{4}{3} \div ? = \frac{-5}{2}$

Options A. $\frac{-8}{5}$

в. <u>-</u>5

c. $\frac{-8}{15}$ D. $\frac{8}{15}$

Answer

 $\frac{4}{3} \div x = \frac{-5}{2}$ $\Rightarrow x = \frac{4}{3} \div \frac{-5}{2}$ $\Rightarrow x = \frac{4}{3} \times \frac{2}{-5}$ $\Rightarrow x = \frac{4 \times 2}{3 \times -5}$ $\Rightarrow x = \frac{8}{-15} = \frac{8 \times -1}{-15 \times -1} = \frac{-8}{15}$

16. Question

Reciprocal of $\frac{-7}{9}$ is Options A. $\frac{9}{7}$

B. $\frac{-9}{7}$

c. $\frac{7}{9}$

D. none of these

Answer

Reciprocal of $\frac{-7}{9} = \frac{9}{-7}$ 9×-1 -9 9

$$\frac{1}{-7} = \frac{1}{-7 \times -1} = \frac{1}{7}$$

17. Question

A rational number between $\frac{-2}{3}$ and $\frac{1}{2}$ is

Options A.
$$\frac{-1}{6}$$

c.
$$\frac{-5}{6}$$

B.
$$\frac{-1}{12}$$

C. $\frac{-5}{6}$
D. $\frac{5}{6}$
Answer
Rational number between $\frac{-1}{3}$ and $\frac{1}{2}$
 $=\frac{1}{2}(\frac{-2}{3} + \frac{1}{2})$
 $=\frac{1}{2}(\frac{-2 \times 2 + 1 \times 3}{6})$
 $=\frac{1}{2}(\frac{-4 + 3}{6})$
 $=\frac{1}{2} \times \frac{-1}{6}$
 $=\frac{-1}{12}$

18. Question

Fill in the blanks.

(i)
$$\frac{25}{8} \div (\dots) = -10.$$

(ii) $\frac{-8}{9} \times (\dots) = \frac{-2}{3}.$

(iii)
$$(-1) + (.....) = \frac{-2}{9}$$
.
(iv) $\frac{2}{3} - (.....) = \frac{1}{15}$.
Answer
(i)
 $\frac{25}{8} \div x = -10$
 $\Rightarrow x = \frac{25}{8} \div -10$
 $\Rightarrow x = \frac{25}{8} \times \frac{1}{-10}$
 $\Rightarrow x = \frac{25}{8} \times \frac{1}{-10}$
 $\Rightarrow x = \frac{25}{800} = \frac{-25 \times -1}{-800 \times -1} = \frac{-25}{80}$
 $\Rightarrow x = \frac{-25}{-80} = \frac{-25 \div 5}{-80 \times -1} = \frac{-5}{16}$
(ii)
 $\frac{-8}{9} \times x = \frac{-2}{3} \div \frac{-8}{9}$
 $\Rightarrow x = \frac{-2}{3} \div \frac{-8}{-8}$
 $\Rightarrow x = \frac{-2}{3} \times \frac{9}{-8}$

$$\Rightarrow x = \frac{-18}{-24} = \frac{-18 \times -1}{-24 \times -1} = \frac{18}{24}$$
$$\Rightarrow x = \frac{18}{24} = \frac{18 \div 6}{24 \div 6} = \frac{3}{4}$$
(iii)

$$-1 + x = \frac{-2}{9}$$

$$\Rightarrow x = \frac{-2}{9} - (-1)$$

$$\Rightarrow x = \frac{-2 \times 1 - (-1) \times 9}{9}$$

$$\Rightarrow x = \frac{-2 + 9}{9}$$

$$\Rightarrow x = \frac{7}{9}$$
(iv)

$$\frac{2}{3} - x = \frac{1}{15}$$

$$\Rightarrow x = \frac{2}{3} - \frac{1}{15}$$

$$\Rightarrow x = \frac{2 \times 5 - 1 \times 1}{15}$$

$$\Rightarrow x = \frac{10 - 1}{15}$$

$$\Rightarrow x = \frac{9}{15} = \frac{9 \div 3}{15 \div 3} = \frac{3}{5}$$

19. Question

Write 'T' for true and 'F' for false for each of the following:

(i) Rational numbers are always closed under subtraction.

(ii) Rational numbers are always closed under division.

(iii) $1 \div 0 = 0$.

(iv) Subtraction is commutative on rational numbers.

$$(\mathsf{v}) - \left(\frac{-7}{8}\right) = \frac{7}{8}.$$

Answer

(i) true

Let there be two rational numbers $\frac{a}{b}$ and $\frac{c}{d}$

Then,

$$\frac{a}{b} - \frac{c}{d} = \frac{ad - bd}{bd}$$

which is also a rational number

Hence, Rational numbers are always closed under subtraction.

(ii) false

 $\frac{a}{0} = \infty$

Hence, Rational numbers are not always closed under division.

(iii) false

 $\frac{1}{0} = \infty$

Hence, $\frac{1}{0} \neq 0$

(iv) false

Let there be two rational numbers $\frac{a}{b}$ and $\frac{c}{d}$

Then,

 $\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$

And

 $\frac{c}{d} - \frac{a}{b} = \frac{bc - ad}{bd}$

Therefore,

 $\frac{a}{b} - \frac{c}{d} \neq \frac{c}{d} - \frac{a}{b}$

Hence, Subtraction is not commutative on rational numbers.

(v) true

 $-\left(\frac{-7}{8}\right) = -1 \times \frac{-7}{8} = \frac{7}{8}$