Boolean Algebra

3.1 BOOLEAN ALGEBRA

In 1854, George Boole introduced the following formalism which eventually became Boolean
Algebra.

Definition. An algebraic system consisting of a set B of eléments a, b, ¢ ... and two binary
operations called the sum and product, denoted respectively by andss,1s called a boolean algebra
iff for all a, b, c € B, the following axioms are satisfied :

(1) a+b,a.beB (closure property)

2) a+b=b+aanda.b="bea (commutative property)

(3) (a+b)+c=a+(b+c)and (a+b).«c=asbsc)lassociative property)

(4) ae(b+c)=asb+ae.cand a+_(b. =(a#b)e(a+c)

(distributive laws)
(56) An additive identity 0 and aynultiplicativesidentity 1 (both belonging to B) exist such that

VaeB a+0=aanddp. 1 =ua (identity)
(6) for every a € B, there exists an elément a’ € B such that
a+a’=1landa.a’ =0 (complement or inverse)
Remarks

1. Some adthors include another axiom—that of cardinality—that there are atleast
two elements,a and b in B such that a # b.

2. Some axioms, ‘especially (6) are quite different from usual arithmetic or algebraic
structures. First, the additive and multiplicative inverses of an element are usually
different, e.¢., in real numbers, additive inverse of 2 is (- 2) whereas multiplicative

inverse of 2 is % .Inboolean algebra, both inverses are the same. Secondly, in a usual

algebra, we have a + 4= 0 and a . @’ = 1. In boolean algebra, we have a + 4’ =1 and
a «a’ = 0. This is more like sets, where A U A’ =& (universal set) and A N A" = ¢
(null set). Observe that & acts as multiplicative identity since AN E = A and ¢ acts as
additive identity (i.e. zero element) since AU =A, V A c &. Also note thatin boolean
algebra, inverse of a is generally denoted as a” and not a~™.

3. The distributive property a « (b + ¢) =a « b + a « ¢ is similar to that of real numbers,
but the distribution of + over « i.e. a + (b « ¢) = (a + b) « (a + ¢) does not hold for
conventional algebra.

4. In conventional algebra, x + x + x + ... n times = n x, but in boolean algebra,
X +x + x + ... n times = x. This is called idempotent law.

5. Since family of sets is a classical example of a boolean algebra, many texts use
U and N instead of + and ..



A-130 UNDERSTANDING ISC MATHEMATICS - XII

6. Modern computers and telecommunications use boolean algebra a lot — binary
digits (or bits) 0 and 1 correspond to electrical switch off or on, current
absent or flowing, bulbs off or on, capacitor discharged or charged etc. This
will become clearer as we proceed.

7. Sometimes a . b is written simply as ab.
8. When parentheses are not used, the operation « has precedence over +.
Thus, in a + b « ¢, we first evaluate b . c.

Example. Let B = {0, 1} and let two operations + and « be defined on B as follows :

+ 1 0 . 1 0
1 1 1 1 1 0
0 1 0 0 0 0

Then B, or more precisely the triplet (B, +, «) is a boolean algebra. (Check ! Are all axioms (1)
to (6) satisfied?) Here 1 is the multiplicative identity and 0 is the additive identity. This is the
smallest possible Boolean Algebra called Switching Algebra.

More examples of Boolean Algebras
We have already given one example of a Boolean Algebra Bg= {01}

Now as second example, let A be a family of sets which is“élesed” under the operations
of union, intersection and complement. Then (A, U, N) is ‘@Boolean Algebra. Note that
universal set £ is the unit element and the null set ¢ is the zero element.

ILLUSTRATIVE EXAMPLES

Example 1. If V = {1, 2, 3}, A = {1, 2}, then A%=-{3}. Show that the set
T ={V, A, A’, ¢} along with operationsiU and N forms Boolean algebra.

Solution. We have to show that this systemsatisfies basic axioms of Boolean Algebra.

The composition tables forU, andy\ ‘are as follows :

ulv |al]a |be Nl v a|a |
v|iv |v | %WV v]iv |A|la ] o
Alv AW Ta Al A AL o | o
Alv v A Ala e | A o
o | v |a Ao ol o o] oo

(1) Closure : all unions and intersections of sets V, A, A’, ¢ belong to T.
(2) Operations U and N are commutative in sets.
(3) Operations U and N are associative in sets.
(4) Operations U and N are distributive in sets
(iee. AUBNC) =(AUB)N(AUCQC) etc.)

(5) Identity element for U, that is, zero element (or additive identity) is ¢, since VU ¢ = V;
AUd=A AU d=A"dU b= 0. Identity element for operation N (that is, unit element)
isVsince VNV=V,ANV=AANV=A56NV=4¢.

(6) Inverse : Inverse of A is A’ and inverse of V is ¢ (check).

Since all basic axioms are satisfied, the system (T, U, N) is a boolean algebra.
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Example 2. Let D, denote the set of divisors of n, where n is a natural number, define
operations +, « and “on D, as
a+b=Ilcm {a, b} ie. least common multiple of a and b,

a «b = gcd {a, b} i.e. greatest common divisor of a and b, and a’ = Z.

Prove that D, is not a boolean algebra, while D, is a boolean algebra.

Solution. (i) For D, = {1, 2, 4}, the tables for given operations are

+ 1 1 2 | 4 . 1 2 | 4 ! 1 2| 4
1 1 2 | 4 1 1 1 1 4| 2 1
212121 4 2 1 2 |2
4| 4| 4| 4 4 1 2 | 4

From these we observe that operations + and « are closed, commutative and associative.
For distribution of + over , we see that

1+Qe4)=1+2=2;

1+2)«(1+4)=2¢4=2ctc.
Similarly, we can verify for other elements, and also the distribution, of « over +.
Now zero element (additive identity) is such that

a + zero element =a V ae D,

From table of ‘+’, we see that 4 + 1 = a Va, so that 1 acts as ‘zero element (additive
identity), while from table of ‘s" we see that a « 4 = a ¥a, sothat 4 acts as unit element
(multiplicative identity).

Thus, we should have a + 4’ = unit element, a_.ssa’ =szero element V a.

From table of /, we see that 2" = 2.

However from table of +, we see that 2 + 2 = 2.# 4 (unit element).

Also from table of ., we see that 2.« 2& 2, # 1 (zero element).

Hence, D, is not a boolean algebra.

(if) For D, = {1, 2, 3, 6}, we construct tablesyfor operations as

+11(12|3 16 s 127 3 |6 111213 ]6
11123 ]6 L1111 6 |3
212|121]6 |6 217112112

313 |6 |86 3111|313

66|66 |6 6| 1]2]3]6

As above, we can verify closure, commutative, associative and distributive properties.
From + table, we see thata + 1 =4 V 4, so that 1 acts as zero element (additive identity),
while from -« table, we see that a « 6 = a V 4, so that 6 acts as unit element (multiplicative
identity).
Now we verify a + a’ = unit element, a « 4’ = zero element V a:
1+6=61.6=1
2+43=6,2.3=1
3+42=6,3.2=1
6+1=66-.1=1
Thus, all properties of boolean algebra are satisfied.

Note. In general, if n is a product of distinct prime numbers, then D, = {set of positive
divisors of n} is a boolean algebra, with least common multiple acting as +, greatest
common divisor acting as -, n acting as complement of 4, integer 1 acting as zero

a

element (additive identity) and integer n acting as unit element (multiplicative
identity). However, if in the prime factorisation of 1, any number is repeated, then
D, is not a boolean algebra.
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EXERCISE 3.1

1. If B={¢, & S, S’} where S is any non-empty subset of &, then show that B along with
the operations U and N forms a boolean algebra.

2. Let B = {{1}, {2}, {1, 2}, ¢}. Show that (B, N, U, ’, ¢, {1, 2}) is a boolean algebra.

3. Let B = {0, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. Show that (B, U, N, ’, ¢, {1, 2, 3})
is a boolean algebra.

4. Let D, = set of divisors of n, where n is a natural number.
Define operations +, « and ” as

n

a+b=lcm{a,b},a.b=gcd{a,b},a’:;_

Prove that Dy is not a boolean algebra while D, is a boolean algebra.

3.2 DUALITY IN A BOOLEAN ALGEBRA

By definition, the dual of any statement in a boolean algebra is the statement derived by
interchanging + and . and also interchanging the identities 1 and 0 in the\eriginal statement.
For example, the dual of statement a + b = b + ais a « b = b g, and dual of statement
a+a=1isa.a=0.
The Principle of Duality says that the dual of any theorém,ina Boolean algebra is also a
theorem.

A theorem is derived from the basic axioms; dual statement of theorem can be proved
by using the dual of each step of the proof of arigirfal thedrem. For example, if we can prove
that a + a = 4, it will follow that a « a = a ; if Weycan/prove that a2 + 1 = 1, it will follow that
a + 0 = 0. Thus, when we prove a theorem irf boolean algebra, we get its dual for free.

3.3 ELEMENTARY PROPERTIES “OF BOOLEAN ALGEBRA

Starting from basic axioms (1),to(6), a mumber of properties of Boolean Algebra can be
proved. Important of these are:

(i) (Idempotent Law) : d + a =a and a . a = a.

(7)) (Boundedness Laws)a +1=1and a . 0 = 0.
(7ii) (Involution Law):na)’ = a.

(v) 1" =0and 0" = 1.

(v) (De Morgan’s'aws) : (a + b)’=a’ . b’ and (a - b)’ =a’" + V.
(vi) (Law of absorption) :a + (@ - b) =aand a . (a + b) = a.
(vii) (Uniqueness of inverse) : for every a € B, a’ is unique.

Proofs of properties:

(i) To prove thata +a =a

a=a+0 (by Identity)
=a+(a.a) (by Inverse)
=(a+a)e.(@a+a) (by Distributive Law)
=@+a).1 (by Inverse)
=a+a (by Identity)

To prove thata « a =a

a=a.l (by Identity)
=a.(a+d) (by Inverse)
=gea+a.d (by Distributive Law)
=age.a+0 (by Inverse)
=a.a (by Identity)

Aliter, the property a « a = a follows by duality from a + a = a.
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(if) To prove thata + 1 =1

1l=a+d (by Inverse)
=a+da.1 (by Identity)
=@a+d).(@+1) (by Distributive Law)
=1.(+1) (by Inverse)
=a+1 (by Identity)

The property a « 0 = 0 follows by duality.
Exercise : Prove a « 0 = 0 from basic axioms!
(iii) To prove Involution Law : (a") = a

As @’ is inverse (complement) of a, we have
a+a =1landa.a =0.

It can be written as @’ + a=1and 4’ « a = 0.
Therefore, by axiom (6), (a")" = a.

(iv) To prove that 1’ =0 and 0" =1

1"=1.1 (by Identity)
=1.71 (by Contmutative Law)
=0 (by Inverse)

The property 0" = 1 follows by duality.
Exercise : Prove 0’ = 1 from basic axioms!

Remark. To prove that @’ = b or b’ = a i.e. to prove thatmand b are inverse of each other,
we should provea + b=1and a « b = 0s

(v) De Morgan’s Laws : To prove that (@ +b)" #a’- V' (I.S.C. 2000)
@+b)e@ b)=(@@ «b).(@+Db) (by Commutative Law)

=@ « V) ea)+ (@ YD) (by Distributive Law)

=((b o @) o a) + (g b)) D) (why?)

=" . (a’sa))+ (@@ .D)) (why?)

=0 «0) +A{ahe 0)=0+0=0.
Also(@a+b)+ @ b)=@+tb+a).@+b+0)
L£a+ad+b).(@+1)=0Q+b).1=1.1=1.
Hence by definitionof inverse, (a +b) =a" . V.
To prove that (@ «b) =a" + 1’

@eb)+@+b0)=ad"+V +a.b (by Commutative Law)
=@+b +a).@+V +b) (why ?)
=(a+ad+b).@+b+0) (why ?)
=1+0V).(@+1) (why ?)
=1.1=1.

Also (@eb) e (@ +b)=(@eb)ea +(@a.b)eb
=@ea)eb+a..b)
=0.b+a.0=0+0=0.
Hence by definition of inverse, (a + b)’ = a’ + b'.
Aliter, the property (a « b)’ = a’ + U’ follows by duality from (a + b) =a’ . 1.
(vi) Law of Absorption : To prove thata +a b =a

a+@sb)=a.l+a.b (why?)
=a.(0+D) (by Distributive Law)
=a.l (by property (ii) above)

a (why?)
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To prove thata « (a + b) = a

ae(@+b=(@+0).(+Db) (why?)
=a+0.b (by Distributive Law)
=a+0 (why?)
=a (why?)
Aliter, the property a « (a + b) = a follows by duality from a +a . b = a.
(vii) Uniqueness of complement (inverse) : (I.S.C. 2003)

Let us assume that a/ and a are two complements of a. Then by definition,

a+a=1a«a =0a+a =1a.a =0.

a1’= al.l—a .(a+a)

(a-a)+(a )—O+(a-a2)
(a’

(.a)+

-a)—(a+a)-a2
=1lea =a.
2 2

Now try to prove it by starting from a’ = a/ + 0.

ILLUSTRATIVE EXAMPLES

Example 1. Write the dual of each of the following statementsy
(i) x+ (y+x)=x
(i) xey'+y=x+y
(iii) (x+y) e (x+1D)=x+xey+y
(i) (x’+y) e (x+y)=x"cy’+xey
@ [(x"+y) e (y+2)]ex'+2) =
Solution. Since the dual statement is derived by interchanging + and . and also
interchanging the identities 1 and(0,ift the original statement, therefore, the dual statements
of the given statements are :
() xo(y+x)=x
(@) x+y)ey=x.y
@) xey) +(xe0)=x.G+vy) ey
() (& ey) + 4=+ 1) « (x + 1)
(@) [(x" e y) + o))+ ("« 2) = 1.

Example 2. Prove that a + (2"« b) =a+band a .« (a’+ b) =a « b.

Solution. a+ (@ +b) = (a+4a) .« (a+Db) (by Distributive Law)
=1.(+D) (by Complement)
=a+b (by Identity)

Similarly, a«.(@ +b) = (@.a) + (a.Db) (by Distributive Law)
=0+ (a.D) (by Complement)
=a.b (by Identity)

Example 3. Prove that a + (a”« c + b) =a + b + c.

Solution. a + (@’ ec+b) =(@a+4a’ s c) + b (by Associative Law)
=(@+a)e(@+c)+b (by Distributive Law)
=(1.(@+c)+5b (by Complement)
=(a+c)+b (by Identity)
=a+(c+0) (by Associativity)
=a+(b+c) (by Commutative Law)

=a+b+ec
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Example 4. Prove that ab + c(a’+ b’) = ab + c. (I.S.C. 2004)
Solution. ab + c(a’ + b’) = ab + c(ab)’ (by De Morgan’s Law)
= (ab + ¢) « (ab + (ab)) (by Distributive Law)
=(@b+c) .1 (by Complement)
=ab +c (by Identity)
Example 5. Prove that (x + y) « (x + 1) =x + x s y + 1.
Solution. (x + y)- (x +1) =(x +y) « 1 (by Boundedness)
=x+y (by Identity)
=(x+x.y) +y (by Absorption Law)
=X+Xx.y+y (by Associative Law)

Example 6. Show that in a boolean algebra, the zero element 0 and the unit element 1 are unique.

Solution. Let 0, 0 be two zero elements in B.
As 0 is an additive identity, by definition,
a+ 0 =aqforall a e B.

0+0=0 ). (i) (taking a = 0)
Also as 0 is an additive identity, by definition,

a+ 0 =aforallae B.

0+0=0 ...(i7) (taking a = 0)
However, by commutativity, we have 0 + 0 =0+ 0

= 0=0. (using (i) and (ii))
Hence, zero element in a boolean algebra isyunigue.

Let 1, 1 be two unit elements in B. Then, by ‘définition
a+l=aanda. 1=a for allde B.
lel=1and1.1="1

However, by commutativity, we have 1.1=1. 1.

Hence 1 = 1.

Example 7. Prove the following :

(i) Ifx + y =0pthenx =0 =y
(ii) x « y* =0 if and.only if x «+ y = x
(iii) x = 0 if and only if y = x « y'+ x" o y for all y.

Solution. (i) Given x + y =0

Now x=x.@+y) (by Absorption Law)
=x.0 (given, x + y = 0)
= 0.

Similarly, y=y.y+x)=y.x+y) =y.0=0.
(if) First assume x « ' =0

= xey)y =0 = x+y=1

Now X =xel=x.&+y) (using x" + y = 1)
=xeX +xey=0+x.y
=Xx.y.

Now to prove the other part, assume x « y = x. We wish to prove that

xey =0

Now xey =@ey oy (using x = x « y)

X ey)=x.0=0.
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(i11) First assume that x = 0
Thenx ey +x ey=0.y +0 ey=0+1.y=0+y=yforally.
To prove the other part, assume that y = x « ¥y’ + 1" « y for all y.
In particular, it is true for y = 0.
O=xe0+xe0=xe1+x"0=x+0=nx.

Thus, x = 0.

Example 8. Prove that if x + y = x + zand x"+ y = x"+ z, then y = z.

Solution. Given x + y = x + z ...(0)

and X +y =x"+z ...(>#0)

Now y=y+0=y+x.x (v xex"=0)
= (y+x) .y +x) (by Distributive Law)
=@x+y . +y) (by Commutative Law)
= (x+2z) e +2) (by using (i) and (if))
=x.x +z (by Distributive Law)
=0+z=2z

Example 9. A boolean algebra cannot have exactly three elements.
Solution. Let a boolean algebra B have exactly three elements andlet B = {0, 1, x }, where
x#0, x # 1 be a boolean algebra under the operation + and « .
Since x e B, there exists x" € B such that
x+x =1 ..(i) andx.x" =0 ...(>#0)
As x” € B and B has exactly three elements, namely Opland x.
Three cases arise :
Casel. Ifx" =0
then (x") = 0" = x = 1, which isqwrong.
Case II. If ¥ = 1
then (x")" = 1" = x = 0, which is wrong.
Case IILIf x* = x, then using(i), fwe, get
¥+x=1=x+%=1
= x=1 (~ x + x = x, Idempotent law)
which is wrongs
It follows that a boolean algebra cannot have exactly three elements.

3.4 BOOLEAN EXPRESSIONS AND FUNCTIONS

In a boolean algebra (B, +, , ’, 0, 1), the specific elements like 0 and 1, or other elements of
B, are called constants. Variables like x and y may denote any element of B. Thus in boolean
algebra {0, 1}, there are only two constants 0, 1, while we may define any number of
variables like x, y, z etc. on B, which may take values 0 or 1.
A boolean expression is any expression built from variables and constants by applying
the operations +, «, ” a finite number of times. Examples of boolean expressions are
x+Lx+y X +y«0 (x+y ¢ +2),[(x;+x)+ x3]" etc.
A boolean function is determined by a boolean expression.
For example,
fx) =x,
fly) =x+y
g, y=x.y +1
Two different boolean expressions may represent the same boolean function. For
example, x« (y + z) and x « y + x « z represent the same boolean function in 3 variables.

A boolean function of n variables x,, x,, ..., x, is a mapping from B” to B. We write it
as f(xy, xp, ..., x,) or g (xy, x,, ..., x,) etc.
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ILLUSTRATIVE EXAMPLES

Example 1. Find the value of the boolean expression (x; « x,)" + x5 if
(i)x;=1,x,=0,x;=1
(i) x;=1,x,=1,x;=0.

Solution. (i) (x; + x,) +x3=(1 0 +1=0+1

=1+1=1.
(i) (x; o x) +x3=(1+1)+0=1+0
=0+0=0.

Example 2. Construct inputfoutput table for the boolean function f on boolean algebra {0, 1}
defined by :
(i) f(xy x) = %7 + X7
(i1) f(xy, x5 x3) = (x; 0+ X,)" + x5.
Solution. (i) As the given boolean function has two variables and is defined on the
boolean algebra {0, 1}, its input/output table is :

Input Output
X X2 X, Xy o %)
1 1 0 0
1 0 1 1
0 1 0 0
0 0 1 0

(if) As the given boolean function has threewariables and is defined on the boolean
algebra {0, 1}, its input/output table is,:

Input Output
X, X, X5 XX, O ex)” | (g o x,) + x4
1 1 1 1 0 1
1 1 0 1 0 0
1 0 1 0 1 1
1 0 0 0 1 1
0 1 1 0 1 1
0 1 0 0 1 1
0 0 1 0 1 1
0 0 0 0 1 1

Example 3. Define a boolean function f on boolean algebra {0, 1} corresponding to the
expression x + y’. Give its domain and range. Construct inputfoutput table (or truth table).

Solution. We define f: B> — B as
f(x, y) =x +y’, where x, y € {0, 1}
Domain is B2 i.e. ({0, 1})2 = {0, 1} x {0, 1} = {(0, 0), (0, 1), (1, 0), (1, 1)}.
From f(x, y) = x + v/,
putting x =0,y =0, we get f(0,0)=0+0=0+1=1.
Similarly, f(0,1)=0+1=0+0=0,
FL,0)=1+0=1+1=1,
FAL 1) =1+1=1+0=1.
Range is B i.e. {0, 1}.
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The input/output table or truth table is :

4

x y y floy)=x+y
0 0 1 1
0 1 0 0
1 0 1 1
1 1 0 1

Example 4. (i) If f (x, y, z) = xy + yz’+ x’yz in boolean algebra B = {0, 1}, evaluate £ (0, 0, 0)
and f(0, 1, 1). How many rows would the truth table have?

(ii) Write a boolean expression in terms of x, y or their complements which has value 1 when
x =0,y =1 and assumes value 0 otherwise.

Solution. (i) f(x, y, z) = xy + yz’ + X'yz

o f(0,0,00)=0.0+0.0+0.0.0=0+0.1+1.0.0

0+0+0=0

f0,1,1) =0e1+1.17+0+1e1=0+1.0+11.1=0+0+1=1.

As there are 3 variables, each of which can have two values, the truth table will have
2 x 2 x2=_8rows.

(if) Here we use the fact that x « y has value 1 only when ¥ =1, )= 1; otherwise x « y has
value 0. Hence, the expression which has value 1 when xe& 0y = 1 is xy.

Note. This idea can be better understood by constructing,the following truth table :

x y x’ y’ xy Xy wxy | xy’
1 1 0 0 1 0 0 0
1 0 0 1 0 1 0 0
0 1 1 0 0 0 1 0
0 0 1 1 0 0 0 1

It is very clear from this table that expression x"y has value 1 when x = 0, y = 1 and
assumes value 0 otherwiseg!

EXERCISE 3.2
1. Write the dual statement of each of the following :

() A+x)«(0+y) =y (i) (xey) =x"+vy
(i) a+1=1 (iv) x +xXy=x+y
W) x+[xey+D]=x (i) x +[(y +x) .yl =1
(i) x+y) =x"+y (iil) X +y) =x.y
(x) (1 ex)+0=x (x) 1ex)=0+x

(xi) f x+y=0thenx=0=y (xii)) x« Y =0ifand only if x e y = x
(xiii) x =0 if and only if y = x « ' + x" « y for all y.
2. Using elementary properties of boolean algebra, prove that :
(@) x+x.(y+1)=x @) @+b)a =0
(@) x+y)+&.y)=1
3. Prove the following statements :

() fxey=1thenx=1=y (i) x +y =1if and only if x + y = x.
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