Applications of Definite Integrals

Definite integrals have a wide range of applications. In this chapter, we shall use definite integrals in computing the areas of bounded regions.

11.1 AREAS OF BOUNDED REGIONS

If the function f is continuous and non-negative in the closed interval [a, b], then the area of the region below the curve y = f(x), above the x-axis and between the ordinates x = a and x = b or briefly the area of the region bounded by the curve y = f(x), the x-axis and the

ordinates
$$x = a$$
, $x = b$ is given by $\int_{a}^{b} f(x) dx$ or $\int_{a}^{b} y dx$.

Proof. Let AB be the curve y = f(x) between AC(x = a) and BD (x = b), then the required area is the area of the shaded region ACDB.

Let P(x, y) be a point on the curve y = f(x) and $Q(x + \delta x, y + \delta y)$ be a neighbouring point on the curve, then MP = y, NQ = $y + \delta y$ and MN = δx . Let A be the area of the region ACMP and $A + \delta A$ be the area of the region ACNQ, then $\delta A = \text{area of region PMNQ}$.

Area of rectangle PMNR = $y\delta x$ and area of rectangle SMNQ = $(y + \delta y)\delta x$.

From fig. 11.1, area of rectangle PMNR \leq area of region PMNQ ≤ area of rectangle SMNQ

$$\Rightarrow y \delta x \le \delta A \le (y + \delta y) \delta x$$

$$\Rightarrow y \le \frac{\delta A}{\delta x} \le y + \delta y$$
When $P \to Q$, $\delta x \to 0$, $\delta y \to 0$ and $\frac{\delta A}{\delta x} \to \frac{dA}{dx}$.

From (i),
$$\underset{\delta x \to 0}{\text{Lt}} y \le \underset{\delta x \to 0}{\text{Lt}} \frac{\delta A}{\delta x} \le \underset{\delta y \to 0}{\text{Lt}} (y + \delta y)$$

$$\Rightarrow$$
 $y \le \frac{dA}{dx} \le y \Rightarrow y = \frac{dA}{dx}$. Integrating both sides w.r.t. x between the limits a to b , we get

$$\int_{a}^{b} y \, dx = \int_{a}^{b} \frac{dA}{dx} \, dx = [A]_{a}^{b}$$
= (value of area A when $x = b$) – (value of area A when $x = a$)
= area ACDB – 0 = area ACDB.

Fig. 11.1.

...(i)

If a function f is continuous and non-positive in the closed interval [a, b], then the curve y = f(x) lies below the x-axis and the definite integral $\int_a^b f(x) \, dx$ is negative. Since the area of a region is always non-negative, the area of the region bounded by the curve y = f(x), the x-axis and the ordinates x = a, x = b is

given by
$$\left| \int_a^b f(x) dx \right|$$
 or $\left| \int_a^b y dx \right|$.

Hence, if the curve y = f(x) is continuous and does not cross the *x*-axis, then the area of the region bounded by the curve y = f(x), the *x*-axis and the

ordinates
$$x = a$$
 and $x = b$ is given by $\left| \int_{a}^{b} f(x) dx \right|$ or

$$\left|\int_{a}^{b} y \, dx\right|.$$

Similarly, if the curve x = g(y) is continuous and does not cross the *y*-axis, then the area of the region bounded by the curve x = g(y), the *y*-axis and the abscissae y = c, y = d is given by

$$\left| \int_{c}^{d} g(y) \, dy \right| \text{ or } \left| \int_{c}^{d} x \, dy \right|.$$

Fig. 11.2.

Fig. 11.3.

Remark. It may be noted that when sign of f(x) is not known, then $\int_a^b f(x) dx$ may not represent the area *enclosed between* the curve y = f(x), the x-axis and the ordinates x = a and x = b, whereas $\int_a^b |f(x)|^2 dx$ equals the area enclosed between the graph of the curve y = f(x), the x-axis and the ordinates x = a and x = b.

For example, let us consider the integrals $\int_{-1}^{1} x \, dx$ and $\int_{-1}^{1} |x| \, dx$.

First integral =
$$\int_{-1}^{1} x \, dx = \left[\frac{x^2}{2}\right]_{-1}^{1} = \frac{1}{2} (1^2 - (-1)^2) = 0$$
, whereas second integral
$$= \int_{-1}^{1} |x| \, dx = \int_{-1}^{0} (-x) \, dx + \int_{0}^{1} x \, dx$$

(Common sense suggests this division as |x| = -x in [-1, 0] and |x| = x in [0, 1]).

$$= \left[-\frac{x^2}{2} \right]_{-1}^{0} + \left[\frac{x^2}{2} \right]_{0}^{1} = -\frac{1}{2} (0 - 1) + \frac{1}{2} (1 - 0) = 1.$$

-1 0 1 x

Fig. 11.4.

Clearly, the area enclosed between y = x, the x-axis and the ordinates x = -1 and x = 1 is not zero.

It follows that if the graph of a function f is continuous in [a, b] and crosses the x-axis at finitely many points in [a, b], then the area enclosed between the graph of the

curve y = f(x), the x-axis and the ordinates x = a, x = b is given by $\int_a^b |f(x)| dx$ or $\int_a^b |y| dx$.

11.1.1 Area bounded between curves

If f(x), g(x) are both continuous in [a, b] and $0 \le g(x) \le f(x)$ for all $x \in [a, b]$, then the area of the region between the graphs of y = f(x), y = g(x) and the ordinates x = a, x = b is given by

$$\int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$$

$$= \int_{a}^{b} (f(x) - g(x)) dx.$$

y = d x = f(y) 0 X

Fig. 11.6.

Similarly, the area of the region between the graphs of x = f(y), x = g(y) and the abscissae y = c, y = d is

given by $\int_{c}^{a} (f(y) - g(y)) dy.$

Remarks

- **1.** If f(x), g(x) are both continuous in [a, b] and $g(x) \le f(x)$ for all $x \in [a, b]$, then the above formula also holds when one or both of the curves y = f(x) and y = g(x) lie partially or completely below the x-axis.
- **2.** If the graphs of the curves y = f(x) and y = g(x) cross each other at finitely many points, then the area enclosed between the graphs of the two curves and the

ordinates
$$x = a$$
 and $x = b$ is given by
$$\int_{a}^{b} |f(x) - g(x)| dx$$
.

3. Similarly, the area of the region between the graphs of x = f(y), x = g(y) and the abscissae y = c, y = d is given by $\int_{c}^{b} |f(y) - g(y)| dy$.

ILLUSTRATIVE EXAMPLES

Example 1. Find the area of the region bounded by $y^2 = 4x$, x = 1, x = 4 and the x-axis in the first quadrant.

Solution. The given curve is $y^2 = 4x$ which represents a right hand parabola with vertex at (0, 0). The area bounded by $y^2 = 4x$, x = 1, x = 4 and the x-axis is shown shaded in the figure.

Required area =
$$\int_{1}^{4} y \ dx = \int_{1}^{4} 2\sqrt{x} \ dx$$

(:
$$y^2 = 4x \Rightarrow y = 2\sqrt{x}$$
 in the first quadrant)

= 2 .
$$\left[\frac{x^{3/2}}{\frac{3}{2}}\right]_1^4 = \frac{4}{3} \left[4^{3/2} - 1^{3/2}\right]$$
 sq. unis

$$=\frac{4}{3} [8-1] \text{ sq. units} = \frac{28}{3} \text{ sq. units.}$$

Example 2. Draw a rough sketch of the curve $x^2 + y = 9$ and find the area enclosed by the curve, the x-axis and the lines x + 1 = 0 and x - 2 = 0. (I.S.C. 2009)

Solution. The given curve is
$$x^2 + y = 9$$

It can be written as $x^2 = 9 - y$

$$\Rightarrow (x-0)^2 = -(y-9)$$

which represents a downward parabola with vertex at (0, 9).

The parabola meets the *x*-axis *i.e.* y = 0 at $x^2 = 9$ *i.e.* at x = -3, 3.

A rough sketch of the curve is shown in fig. 11.8.

The given lines are x + 1 = 0 and x - 2 = 0 i.e. x = -1 and x = 2.

The area enclosed by the curve, the *x*-axis and the given lines is shown shaded in fig. 11.8.

(using (i))

∴ Required area =
$$\int_{-1}^{2} y \, dx = \int_{-1}^{2} (9 - x^2) \, dx$$

= $\left[9x - \frac{x^3}{3} \right]_{-1}^{2} = \left(\left(18 - \frac{8}{3} \right) - \left(-9 + \frac{1}{3} \right) \right)$ sq. units
= $\left(27 - \frac{8}{3} - \frac{1}{3} \right)$ sq. units = 24 sq. units.

Example 3. Determine the area enclosed between the curve $y = 4x - x^2$ and the x-axis.

Solution. Given curve is $y = 4x - x^2$.

It can be written as $x^2 - 4x = -y \implies (x - 2)^2 = -(y - 4)$

which represents a downward parabola with vertex at (2, 4).

The parabola meets *x*-axis *i.e.* y = 0 at $4x - x^2 = 0$ *i.e.* at x = 0, x = 4.

 \therefore The area enclosed between the curve and the *x*-axis

$$= \int_{0}^{4} y \, dx = \int_{0}^{4} (4 \, x - x^{2}) \, dx = \left[4 \cdot \frac{x^{2}}{2} - \frac{x^{3}}{3} \right]_{0}^{4}$$
$$= \left(32 - \frac{64}{3} \right) - (0 - 0) = \frac{32}{3} \text{ sq. units.}$$

Fig. 11.9.

Alternatively. Since the parabola is symmetrical about the line x = 2,

required area =
$$2\int_0^2 (4x - x^2) dx = 2\left[4 \cdot \frac{x^2}{2} - \frac{x^3}{3}\right]_0^2$$

= $2\left[\left(8 - \frac{8}{3}\right) - (0 - 0)\right]$ sq. units = $2 \cdot \frac{16}{3}$ sq. units = $\frac{32}{3}$ sq. units.

Remark. In case of symmetrical closed area, find the area of the smallest part and multiply the result by the number of symmetrical parts.

Example 4. Draw a rough sketch of the curve $y^2 + 1 = x$, $x \le 2$. Find the area enclosed by the curve and the line x = 2. (I.S.C. 2008)

Solution. Given curve is $y^2 + 1 = x$.

It can be written as $y^2 = x - 1$, which represents a right hand parabola with vertex at A(1, 0).

The parabola meets the line x = 2 at when $y^2 = 1$ *i.e.* y = 1, -1.

A rough sketch of the curve $y^2 + 1 = x$, $x \le 2$ is shown in fig. 11.10. The area bounded by the curve $y^2 = x - 1$ and the line x = 2 is shown shaded in the figure. Since the given area is symmetrical about x-axis,

required area = 2(area of the region bounded by the curve $y^2 = x - 1$, the *x*-axis and the line x = 2)

Fig. 11.10.

$$= 2 \int_{1}^{2} y \, dx = 2 \int_{1}^{2} \sqrt{x - 1} \, dx \quad (\because y^{2} = x - 1) \Rightarrow y = \sqrt{x - 1} \text{ in the first quadrant)}$$

$$= 2 \cdot \left[\frac{(x - 1)^{3/2}}{\frac{3}{2}} \right]_{1}^{2} = \frac{4}{3} [1^{3/2} - 0] \text{ sq. units} = \frac{4}{3} \text{ sq. units.}$$

Example 5. Draw a rough sketch of the curve $y = x^2 - 5x + 6$ and find the area bounded by the curve and the x-axis. (I.S.C. 2010)

Solution. The given curve is $y = x^2 - 5x + 6$.

It can be written as $x^2 - 5x + \frac{25}{4} = y + \frac{1}{4}$

$$\Rightarrow$$
 $\left(x-\frac{5}{2}\right)^2=y-\left(-\frac{1}{4}\right)$, which represents an

upward parabola with vertex at $\left(\frac{5}{2}, -\frac{1}{4}\right)$.

A rought sketch of the curve is shown in fig. 11.11.

The parabola meets the *x*-axis *i.e.*
$$y = 0$$
 at $x^2 - 5x + 6 = 0$ *i.e.* at $(x - 2)(x - 3) = 0$

i.e. at
$$x = 2$$
, $x = 3$.

 $\begin{array}{c|c}
 & & \\
\hline
0 & & \\
\hline
1 & & \\
\hline
2 & & \\
\hline
3 & \\
\hline
\chi
\end{array}$

Fig. 11.11.

As the required portion of the curve lies below x-axis, y is negative.

$$\therefore \text{ Required area} = \left| \int_{2}^{3} y \, dx \right| = \left| \int_{2}^{3} (x^{2} - 5x + 6) dx \right| \\
= \left| \left[\frac{x^{3}}{3} - 5 \cdot \frac{x^{2}}{2} + 6x \right]_{2}^{3} \right| = \left| \left(9 - \frac{45}{2} + 18 \right) - \left(\frac{8}{3} - 10 + 12 \right) \right| \text{ sq. units} \\
= \left| \frac{9}{2} - \frac{14}{3} \right| \text{ sq. units} = \left| -\frac{1}{6} \right| \text{ sq. units} = \frac{1}{6} \text{ sq. units.}$$

Example 6. Find the area of the region bounded by the curve $y^2 = 4x$, y-axis and the line y = 3.

Solution. The given curve is $y^2 = 4x$ which represents a right hand parabola with vertex (0, 0). The area bounded by the curve $y^2 = 4x$, y-axis and the line y = 3 is shown shaded in fig. 11.12.

Required area =
$$\int_{0}^{3} x \, dy = \int_{0}^{3} \frac{y^{2}}{4} \, dy$$

(: $y^{2} = 4x \Rightarrow x = \frac{y^{2}}{4}$)
= $\frac{1}{4} \cdot \left[\frac{y^{3}}{3} \right]_{0}^{3} = \frac{1}{12} [27 - 0]$
= $\frac{9}{4}$ sq. units.

Fig. 11.12.

Example 7. Find the area of the region bounded by the curve $y = x^2$ and the line y = 4.

Solution. The given curve is $y = x^2$ which represents an upward parabola with vertex at (0, 0). The area bounded by the curve and the line y = 4 is shown shaded in fig. 11.13.

Since the area is symmetrical about y-axis,

required area = 2 (area of the region bounded by $y = x^2$, the *y*-axis and the line y = 4)

$$= 2 \int_{0}^{4} x \, dy = 2 \int_{0}^{4} \sqrt{y} \, dx$$

(: $x^2 = y \Rightarrow x = \sqrt{y}$ in the first quadrant)

$$= 2 \cdot \left[\frac{x^{3/2}}{\frac{3}{2}} \right]_0^4 = \frac{4}{3} \left[4^{3/2} - 0 \right] = \frac{4}{3} \left[8 - 0 \right] = \frac{32}{3} \text{ sq. units.}$$

Example 8. Sketch and shade the area of the region lying in the first quadrant and bounded by $y = 9 x^2$, x = 0, y = 1 and y = 4. Find the area of the shaded region. (I.S.C. 2004)

Solution. The given curve is $y = 9 x^2$. It can be written

as $x^2 = \frac{y}{9}$ which represents an upward parabola with vertex at (0, 0). The area lying in the first quadrant and bounded by $y = 9 x^2$, x = 0, y = 1 and y = 4 is shown shaded in fig. 11.14.

The required area =
$$\int_{1}^{4} x \, dy = \int_{1}^{4} \sqrt{\frac{y}{9}} \, dy$$

$$(\because x^2 = \frac{y}{9} \Rightarrow x = \sqrt{\frac{y}{9}} \text{ in the first quadrant.})$$

$$= \frac{1}{3} \left[\frac{y^{3/2}}{\frac{3}{2}} \right]_{1}^{4} = \frac{2}{9} \left[4^{3/2} - 1^{3/2} \right]$$
$$= \frac{2}{9} (8 - 1) = \frac{14}{9} \text{ sq. units.}$$

Fig. 11.14.

Example 9. Find the area bounded by the curve $x = 8 + 2y - y^2$, the y-axis and the lines y = -1, y = 3.

Solution. The given curve is $x = 8 + 2y - y^2$.

It can be written as

$$y^2 - 2y = -x + 8$$

 \Rightarrow $(y-1)^2 = -(x-9)$ which represents a left hand parabola with vertex at (9, 1).

Required area

$$= \int_{-1}^{3} x \, dy = \int_{-1}^{3} (8 + 2y - y^2) \, dy$$

$$= \left[8y + 2 \cdot \frac{y^2}{2} - \frac{y^3}{3} \right]_{-1}^{3}$$

$$= (24 + 9 - 9) - \left(-8 + 1 + \frac{1}{3} \right) = \frac{92}{3} \text{ sq. units.}$$

Fig. 11.15.

Example 10. Draw a rough sketch of the graph of the function $y = 2\sqrt{1-x^2}$, $x \in [0, 1]$ and evaluate the area enclosed between the curve and the axes.

Solution. The given curve is $y = 2\sqrt{1-x^2}$

$$\Rightarrow \frac{y^2}{4} = 1 - x^2 \Rightarrow \frac{x^2}{1} + \frac{y^2}{4} = 1$$
, which represents an

ellipse of the second standard form. Hence, the given

equation $y = 2\sqrt{1-x^2}$ represents the portion of the ellipse lying in the first quadrant. Its rough sketch is shown in fig. 11.16.

The required area = the area of the shaded region

$$= \int_{0}^{1} y \, dx = \int_{0}^{1} 2\sqrt{1 - x^{2}} \, dx$$

$$= 2 \left[\frac{x\sqrt{1 - x^{2}}}{2} + \frac{1}{2}\sin^{-1}x \right]_{0}^{1} = \left[x\sqrt{1 - x^{2}} + \sin^{-1}x \right]_{0}^{1}$$

$$= (0 + \sin^{-1}1) - (0 + \sin^{-1}0) = \frac{\pi}{2} \text{ sq. units.}$$

Fig. 11.16.

Example 11. Find the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the ordinates x = 0 and x = ae where $b^2 = a^2 (1 - e^2)$ and 0 < e < 1.

Solution. The given ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

$$\Rightarrow \frac{y^2}{b^2} = 1 - \frac{x^2}{a^2}$$

$$\Rightarrow \qquad y = \pm \frac{b}{a} \sqrt{a^2 - x^2}$$

The required area is shown shaded in fig. 11.17.

Since the area is symmetrical about the *x*-axis,

required area = 2 (area of the region bounded by the given ellipse, x-axis and the lines x = 0 and x = ae)

$$= 2 \int_{0}^{ae} y \, dx = 2 \int_{0}^{ae} \frac{b}{a} \sqrt{a^2 - x^2} \, dx$$

Fig. 11.17.

(: $y \ge 0$ in the first quadrant)

$$= 2 \frac{b}{a} \left[\frac{x\sqrt{a^2 - x^2}}{2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \right]_0^{ae}$$

$$= \frac{b}{a} \left[\left(ae \sqrt{a^2 - a^2 e^2} + a^2 \sin^{-1} e \right) - \left(0 + \frac{a^2}{2} \sin^{-1} 0 \right) \right]$$

$$= ab \left(e \sqrt{1 - e^2} + \sin^{-1} e \right).$$

Example 12. The area between $x = y^2$ and x = 4 is divided into two equal parts by the line x = a, find the value of a.

Solution. The given curve is $y^2 = x$ which represents a right hand parabola with vertex (0, 0).

The area bounded by the parabola and the line x = 4is shown shaded in the fig. 11.18.

This area =
$$2 \int_{0}^{4} y \, dx = 2 \int_{0}^{4} \sqrt{x} \, dx$$

= $2 \cdot \left[\frac{x^{3/2}}{\frac{3}{2}} \right]_{0}^{4} = \frac{4}{3} (4^{3/2} - 0) = \frac{4}{3} (8 - 0) = \frac{32}{3}.$

Since the line x = a divides this area into two equal parts, therefore,

$$2 \int_{0}^{a} \sqrt{x} dx = \frac{1}{2} \cdot \frac{32}{3} \implies \int_{0}^{a} \sqrt{x} dx = \frac{8}{3}$$

$$\Rightarrow \left[\frac{x^{3/2}}{\frac{3}{2}}\right]_{0}^{a} = \frac{8}{3} \Rightarrow \frac{2}{3} (a^{3/2} - 0) = \frac{8}{3}$$

$$\Rightarrow a^{3/2} = 4 \Rightarrow a = 4^{2/3}$$

$$\Rightarrow a = \sqrt[3]{16}.$$

Example 13. Find the area of the smaller region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the straight line $\frac{x}{a} + \frac{y}{b} = 1$.

Solution. The given ellipse is
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \implies \frac{y^2}{b^2} = 1 - \frac{x^2}{a^2}$$

$$\Rightarrow y = \frac{b}{a} \sqrt{a^2 - x^2} \qquad (\because \text{ In first quadrant, } y \ge 0)$$

The given line is
$$\frac{x}{a} + \frac{y}{b} = 1$$

$$\Rightarrow \frac{y}{b} = 1 - \frac{x}{a} = \frac{a - x}{a}$$

$$\Rightarrow$$
 $y = \frac{b}{a}(a-x)$

The area of the smaller region bounded by the given ellipse and the given line is shown shaded in the figure.

Required area =
$$\int_{0}^{a} \left(\frac{b}{a} \sqrt{a^{2} - x^{2}} - \frac{b}{a} (a - x) \right) dx$$
 (Article 11.1.1)
= $\frac{b}{a} \left[\frac{x\sqrt{a^{2} - x^{2}}}{2} + \frac{a^{2}}{2} \sin^{-1} \frac{x}{a} - ax + \frac{x^{2}}{2} \right]_{0}^{a}$

$$= \frac{b}{a} \left[\left(0 + \frac{a^2}{2} \sin^{-1} 1 - a^2 + \frac{a^2}{2} \right) - \left(0 + \frac{a^2}{2} \sin^{-1} 0 - 0 + 0 \right) \right]$$
$$= \frac{b}{a} \left[\left(\frac{a^2}{2} \cdot \frac{\pi}{2} - \frac{a^2}{2} \right) - 0 \right] = \frac{1}{4} (\pi - 2) \ ab \ \text{sq. units.}$$

Example 14. Find the area of the region included between the curve $4y = 3x^2$ and the line 2y = 3x + 12.

Solution. The given curve is $4y = 3x^2$...(*i*)

It can be written as $y = \frac{3}{4}x^2$, which represents an upward parabola with vertex at (0, 0).

The given line is 3x - 2y + 12 = 0

$$\Rightarrow \quad y = \frac{3x + 12}{2} \qquad \qquad \dots (ii)$$

Solving (i) and (ii), we get

$$\frac{3x + 12}{2} = \frac{3}{4}x^2$$

$$\Rightarrow$$
 6 x + 24 = 3 x^2

$$\Rightarrow$$
 $x^2 - 2x - 8 = 0 \Rightarrow (x + 2)(x - 4) = 0$

$$\Rightarrow$$
 $x = -2, x = 4.$

 \therefore The points of intersection are P (-2, 3) and Q (4, 12)

$$= \int_{-2}^{4} \left(\frac{3x+12}{2} - \frac{3}{4}x^2 \right) dx$$

$$= \left[\frac{3}{2} \cdot \frac{x^2}{2} + 6x - \frac{3}{4} \cdot \frac{x^3}{3} \right]_{-2}^{4} = \frac{1}{4} \left[3x^2 + 24x - x^3 \right]_{-2}^{4}$$

$$= \frac{1}{4} \left[(48 + 96 - 64) - (12 - 48 + 8) \right]$$

$$= \frac{1}{4} \cdot 108 = 27 \text{ sq. units.}$$

Solution. The given parabola is $y^2 = x$...(*i*)

It represents a right hand parabola with vertex at (0, 0).

The given line is y + x = 2

i.e.
$$x = 2 - y$$
 ...(ii)

Solving (i) and (ii), we get

$$y^2 = 2 - y \Rightarrow y^2 + y - 2 = 0$$

$$\Rightarrow$$
 $(y - 1) (y + 2) = 0 \Rightarrow y = 1, -2$

When y = 1, x = 1, when y = -2, x = 4

The points of intersection are P(1, 1) and Q(4, -2).

The required area = area of the shaded region

$$= \int_{-2}^{1} ((2 - y) - y^2) dy = \left[2y - \frac{y^2}{2} - \frac{y^3}{3} \right]_{-2}^{1}$$

Fig. 11.20.

[Article 11.1.1]

Fig. 11.21.

$$= \left(2 - \frac{1}{2} - \frac{1}{3}\right) - \left(-4 - 2 + \frac{8}{3}\right)$$
$$= 2 - \frac{1}{2} - \frac{1}{3} + 6 - \frac{8}{3} = 4\frac{1}{2} \text{ sq. units.}$$

Example 16. Find the area bounded by the curve $y = 2x - x^2$ and the line y = x. (I.S.C. 2013)

Solution. The given curve is $y = 2x - x^2$...(*i*) It can be written as $y = -(x^2 - 2x + 1) + 1$ *i.e.* $(y - 1) = -(x - 1)^2$, which represents a downward parabola with vertex at (1, 1).

The given line is y = x

Solving (i) and (ii), we get

$$x = 2x - x^2 \Rightarrow x^2 - x = 0$$

$$\Rightarrow x = 0, 1.$$

 \therefore The points of intersection are O (0, 0) and P (1, 1).

$$= \int_{0}^{1} ((2x - x^{2}) - x) dx = \int_{0}^{1} (x - x^{2}) dx$$

$$= \left[\frac{x^{2}}{2} - \frac{x^{3}}{3} \right]_{0}^{1} = \left(\frac{1}{2} - \frac{1}{3} \right) - (0 - 0) = \frac{1}{6} \text{ sq. units.}$$

Solution. The given curve is $y = -x^2$...(*i*) It represents a downward parabola with

It represents a downward parabola with vertex O(0, 0).

The given line is
$$x + y + 2 = 0$$

$$\Rightarrow y = -(x + 2)$$

Solving (i) and (ii), we get

$$-x^2 = -(x + 2) \Rightarrow x^2 - x - 2 = 0$$

$$\Rightarrow$$
 $(x + 1) (x - 2) = 0 \Rightarrow x = -1, 2.$

When x = -1, y = -1 and when x = 2, y = -4.

 \therefore The points of intersection are P(-1, -1) and Q (2, -4).

The required area is shown shaded in fig. 11.23. We note that the required area lies below the *x*-axis, therefore,

required area =
$$\left| \int_{-1}^{2} (-(x+2) - (-x^2)) dx \right|$$

= $\left| \left[-\left(\frac{x^2}{2} + 2x\right) + \frac{x^3}{3} \right]_{-1}^{2} \right|$
= $\left| \left(-6 + \frac{8}{3} \right) - \left(-\left(\frac{1}{2} - 2\right) - \frac{1}{3} \right) \right| = \frac{9}{2}$ sq. units.

Fig. 11.22.

[Article 11.1.1]

EXERCISE 11.1

- **1.** (*i*) Find the area bounded by the curve $y = x^2$, the *x*-axis and the ordinates x = 1 and x = 3.
 - (ii) Find the area of the region bounded by $y^2 = x 2$ and the lines x = 4 and x = 6.
 - (iii) Find the area of the region bounded by $x^2 = 4y$, y = 2, y = 4 and the *y*-axis in the first quadrant.
 - (iv) Find the area of the region bounded by $x^2 = y 3$ and the lines y = 4 and y = 6.
- **2.** Using integration, find the area of the region bounded between the line x = 2 and the parabola $y^2 = 8x$.
- **3.** Using integration, find the area of the region bounded by the line 2y = -x + 8, x-axis and the lines x = 2 and x = 4.
- **4.** Make a rough sketch of the graph of the function $f(x) = 9 x^2$, $0 \le x \le 3$ and determine the area enclosed between the curve and the axes.
- 5. Draw a rough sketch of the curve $y = \sqrt{3x+4}$ and find the area under the curve, above the *x*-axis and between x = 0 and x = 4.
- **6.** Sketch the rough graph of $y = 4\sqrt{x-1}$, $1 \le x \le 3$ and compute the area between the curve, *x*-axis and the line x = 3.
- 7. Find the area enclosed between the curve $y = 2x + x^2$ and the x-axis.
- 8. Find the area of the region bounded by the curve $y^2 = 2y x$ and the y-axis.
- **9.** Find the area bounded by the curve $y = x^2 7x + 6$, the *x*-axis and the lines x = 2, x = 6.
- 10. Find the area of the region bounded by the curve $x = 4y y^2$ and the y-axis.

(I.S.C. 2012)

- 11. Sketch the graph of the curve $y = \sqrt{x} + 1$, $0 \le x \le 4$ and determine the area of the region enclosed by the curve, *x*-axis and the lines x = 0 and x = 4.
- 12. Find the area of the region bounded by the parabola $y^2 = 4ax$ and its latus-rectum.
- 13. (i) Find the area lying between the curve $y^2 = 4x$ and the line y = 2x.
 - (ii) Find the area enclosed by the parabola $y^2 = 4ax$ and the chord y = mx.
- 14. Find the area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines x = 0 and x = 2.
- **15.** Sketch the region $\{(x, y); 4x^2 + 9y^2 = 36\}$ and find its area, using integration.
- **16.** Make a rough sketch of the curve $\frac{x^2}{4} + \frac{y^2}{9} = 1$ and find
 - (i) the area under the curve and above the x-axis.
 - (ii) the area enclosed by the curve.
- 17. Find the area of the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- **18.** (*i*) Find the area of the smaller part enclosed by the circle $x^2 + y^2 = 4$ and the line x + y = 2.
 - (ii) Find the area of the smaller part of the circle $x^2 + y^2 = a^2$ cut off by the line $x = \frac{a}{\sqrt{2}}$.
- **19.** Find the area of the region in the first quadrant enclosed by the *x*-axis, the line y = x and the curve $x^2 + y^2 = 16$.

- 12. Find the area of the region enclosed by the curves $y = x^2$, $y = x^2 2x$ and the lines x = 1, x = 3.
- 13. Draw a rough sketch of the curves $y = \sin x$ and $y = \cos x$ as x varies from 0 to $\frac{\pi}{2}$ and find the area of the region enclosed by them and the x-axis.
- 14. Find the area enclosed by the curve $y = x^3$, the x-axis and the ordinates x = -2 and
- **15.** Find the area bounded by the curve $y = x^3$ and the line y = x.

ANSWERS

EXERCISE 11.1

- **1.** (i) $\frac{26}{3}$ sq. units (ii) $\frac{8}{3}(4-\sqrt{2})$ sq. units (iii) $\frac{8}{3}(4-\sqrt{2})$ sq. units
 - (*iv*) $\frac{4}{3}(3\sqrt{3} 1)$ sq. units.
- 2. $\frac{32}{3}$ sq. units. 3. 5 sq. units. 4. 18 sq. units.
- 5. $\frac{112}{9}$ sq. units 6. $\frac{16\sqrt{2}}{3}$ sq. units. 7. $\frac{4}{3}$ sq. units. 8. $\frac{4}{3}$ sq. units. 9. $\frac{56}{3}$ sq. units. 10. $\frac{32}{3}$ sq. units. 11. $\frac{28}{3}$ sq. units. 12. $\frac{8}{3}$ a^2 sq. units. 13. (i) $\frac{1}{3}$ sq. units (ii) $\frac{8a^2}{3m^3}$ sq. units. 14. π sq. units. 15. 6π sq. units (ii) 2π sq. units.
- **15.** 6π sq. units. **16.** (*i*) 3π sq. units
- 17. π ab sq. units. 18. (i) $(\pi 2)$ sq. units (ii) $\frac{a^2}{4}(\pi 2)$ sq. units.
- **20.** $\frac{3}{2}(\pi 2)$ sq. units. **21.** (i) $\frac{1}{6}$ sq. units. (ii) $\frac{9}{8}$ sq. units. **19.** 2π sq. units.
- 22. 18 sq. units. 23. $(\pi 2)$ sq. units 25. $\frac{2}{3} a^2$ sq. units.
- **26.** (i) $\frac{16}{3}$ sq. units (ii) $\frac{16}{3}a^2$ sq. units.
- 27. (i) $\frac{23}{6}$ sq. units (ii) $\left(\frac{\pi}{4} \frac{1}{2}\right)$ sq. units (iii) $\frac{1}{3}$ sq. units.
- **28.** $\frac{16}{3}$ sq. units. **29.** $\left(\frac{2\pi}{3} \frac{\sqrt{3}}{2}\right)$ sq. units. 30. $\frac{13}{2}$ sq. units.
- 31. 4 sq. units. 32. $\frac{\pi}{4}$ sq. units. 33. 4 sq. units.

EXERCISE 11.2

- 1. 9; it represents the area below the graph, above the x-axis and bounded by the lines x = -4
- **2.** $\frac{16}{3}a$ sq. units. **3.** (i) $\frac{3}{2}$ sq. units (ii) 6 sq. units.
- 4. $(8\pi \sqrt{3}): (4\pi + \sqrt{3}).$ **5.** 15 : 49.
- 7. $\left(\frac{4-\sqrt{2}}{\log 2} \frac{5}{2}\log 2 + \frac{3}{2}\right)$ sq. units. **6.** $20\frac{5}{6}$ sq. units; $10\frac{2}{3}$ sq. units.