5

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

INTRODUCTION

We know that $x^2 \ge 0$ for all $x \in \mathbf{R}$ *i.e.* the square of a real number (whether positive, negative or zero) is non-negative. Hence the equations $x^2 = -1$, $x^2 = -5$, $x^2 + 7 = 0$ etc. are not solvable *in real number system*. Thus, there is a need to extend the real number system to a larger system so that we can have solutions of such equations. In fact, our main objective is to solve the quadratic equation $ax^2 + bx + c = 0$, where a, b, $c \in \mathbf{R}$ and the discriminant $= b^2 - 4$ ac < 0, which is not possible in real number system. In this chapter, we shall extend the real number system to a larger system called **complex number system** so that the solutions of quadratic equations $ax^2 + bx + c = 0$, where a, b, c are real numbers are possible. We shall also solve quadratic equations with complex coefficients.

5.1 COMPLEX NUMBERS

We know that the equation $x^2 + 1 = 0$ is not solvable in the real number system *i.e.* it has no real roots. Many mathematicians indicated the square roots of negative numbers, but **Euler** was the first to introduce the symbol i (*read 'iota'*) to represent $\sqrt{-1}$, and he defined $i^2 = -1$.

If follows that i is a solution of the equation $x^2 + 1 = 0$. Also $(-i)^2 = i^2 = -1$. Thus the equation $x^2 + 1 = 0$ has two solutions, $x = \pm i$, where $i = \sqrt{-1}$.

The number i is called an *imaginary number*. In general, the square roots of all negative real numbers are called *imaginary numbers*. Thus $\sqrt{-1}$, $\sqrt{-5}$, $\sqrt{-\frac{9}{4}}$ etc. are all imaginary numbers.

Complex number

A number of the form a + ib, where a and b are real numbers, is called a **complex number**.

For example,
$$3 + 5i$$
, $-2 + 3i$, $-2 + i\sqrt{5}$, $7 + i\left(-\frac{2}{3}\right)$ are all complex numbers.

The system of numbers $C = \{z; z = a + ib; a, b \in R\}$ is called the set of complex numbers.

Standard form of a complex number

If a complex number is expressed in the form a + i b where $a, b \in \mathbb{R}$ and $i = \sqrt{-1}$, then it is said to be in the **standard form**.

For example, the complex numbers 2 + 5i, $-3 + \sqrt{2}i$, $-\frac{2}{3} - 7i$ are all in the standard form.

Real and imaginary parts of a complex number

If z = a + ib ($a, b \in \mathbb{R}$) is a complex number, then a is called the **real part**, denoted by Re(z) and b is called **imaginary part**, denoted by Im(z).

For example:

- (i) If z = 2 + 3i, then Re(z) = 2 and Im(z) = 3.
- (ii) If $z = -3 + \sqrt{5}i$, then Re(z) = -3 and Im(z) = $\sqrt{5}$.
- (iii) If z = 7, then z = 7 + 0 i, so that Re(z) = 7 and Im(z) = 0.
- (iv) If z = -5i, then z = 0 + (-5)i, so that Re(z) = 0 and Im(z) = -5.

Note that imaginary part of a complex number is a real number.

In z = a + ib ($a, b \in \mathbb{R}$), if b = 0 then z = a, which is a **real number**. If a = 0 and $b \neq 0$, then z = ib, which is called **purely imaginary number**. If $b \neq 0$, then z = a + ib is **non-real complex number**. Since every real number a can be written as a + 0i, we see that $\mathbf{R} \subset \mathbf{C}$ *i.e.* the set of real numbers \mathbf{R} is a **proper subset** of \mathbf{C} , the set of complex numbers.

Note that $\sqrt{3}$, 0, 2, π are real numbers; 3+2i, 3-2i etc. are non-real complex numbers; 2i, $-\sqrt{2}i$ etc. are purely imaginary numbers.

Equality of two complex numbers

Two complex numbers $z_1 = a + ib$ and $z_2 = c + id$ are called **equal**, written as $z_1 = z_2$, if and only if a = c and b = d.

For example, if the complex numbers $z_1 = a + ib$ and $z_2 = -3 + 5i$ are equal, then a = -3 and b = 5.

5.1.1 Algebra of complex numbers

In this section, we shall define the usual mathematical operations — addition, subtraction, multiplication, division, square, power etc. on complex numbers and will develop the algebra of complex numbers.

Addition of two complex numbers

Let $z_1 = a + ib$ and $z_2 = c + id$ be any two complex numbers, then their sum $z_1 + z_2$ is defined as $z_1 + z_2 = (a + c) + i(b + d)$.

For example, let $z_1 = 2 + 3i$ and $z_2 = -5 + 4i$, then

 $z_1 + z_2 = (2 + (-5)) + (3 + 4)i = -3 + 7i.$

Properties of addition of complex numbers

(i) Closure property

The sum of two complex numbers is a complex number *i.e.* if z_1 and z_2 are any two complex numbers, then $z_1 + z_2$ is always a complex number.

(ii) Addition of complex numbers is commutative

If z_1 and z_2 are any two complex numbers, then $z_1 + z_2 = z_2 + z_1$.

(iii) Addition of complex numbers is associative

If z_1 , z_2 and z_3 are any three complex numbers, then

$$(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3).$$

(iv) The existence of additive identity

Let z = x + iy, $x, y \in \mathbb{R}$, be any complex number, then

$$(x + iy) + (0 + i0) = (x + 0) + i(y + 0) = x + iy$$
 and

$$(0+i0) + (x+iy) = (0+x) + i(0+y) = x+iy$$

$$\Rightarrow$$
 $(x + iy) + (0 + i0) = x + iy = (0 + i0) + (x + iy).$

Therefore, 0 + i0 acts as the additive identity. It is simply written as 0.

Thus, z + 0 = z = 0 + z for all complex numbers z.

(v) The existence of additive inverse

For a complex number z = a + ib, its negative is defined as

$$-z = (-a) + i(-b) = -a - ib.$$

Note that
$$z + (-z) = (a - a) + i(b - b) = 0 + i0 = 0$$
.

Thus -z acts as additive inverse of z.

Subtraction of complex numbers

Let $z_1 = a + ib$ and $z_2 = c + id$ be any two complex numbers, then the subtraction of z_2 from z_1 is defined as

$$z_1 - z_2 = z_1 + (-z_2)$$

= $(a + ib) + (-c - id)$
= $(a - c) + i (b - d)$.

For example, let $z_1 = 2 + 3i$ and $z_2 = -1 + 4i$, then

$$z_1 - z_2 = (2 + 3i) - (-1 + 4i)$$

$$= (2 + 3i) + (1 - 4i)$$

$$= (2 + 1) + (3 - 4) i = 3 - i.$$

$$z_2 - z_1 = (-1 + 4i) - (2 + 3i)$$

$$= (-1 + 4i) + (-2 - 3i)$$

$$= (-1 - 2) + (4 - 3) i = -3 + i.$$

Multiplication of two complex numbers

Let $z_1 = a + ib$ and $z_2 = c + id$ be any two complex numbers, then their product z_1z_2 is defined as

$$z_1 z_2 = (ac - bd) + i(ad + bc).$$

Note that intuitively,

and

$$(a+ib)$$
 $(c+id) = ac + ibc + iad + i^2bd$, now put $i^2 = -1$, thus

$$(a + ib) (c + id) = ac + i (bc + ad) - bd = (ac - bd) + i (ad + bc).$$

For example, let $z_1 = 3 + 7i$ and $z_2 = -2 + 5i$, then

$$z_1 z_2 = (3 + 7i) (-2 + 5i)$$

= $(3 \times (-2) - 7 \times 5) + i(3 \times 5 + 7 \times (-2))$
= $-41 + i$.

Properties of multiplication of complex numbers

(i) Closure property

The product of two complex numbers is a complex number *i.e.* if z_1 and z_2 are any two complex numbers, then z_1z_2 is always a complex number.

(ii) Multiplication of complex numbers is commutative

If z_1 and z_2 are any two complex numbers, then $z_1z_2=z_2z_1$.

(iii) Multiplication of complex numbers is associative

If z_1 , z_2 and z_3 are any three complex numbers, then $(z_1z_2)z_3 = z_1(z_2z_3)$.

(iv) The existence of multiplicative identity

Let
$$z = x + iy$$
, $x, y \in \mathbb{R}$, be any complex number, then $(x + iy) (1 + i0) = (x.1 - y.0) + i (x.0 + y.1) = x + iy$ and $(1 + i0) (x + iy) = (1.x - 0.y) + i (1.y + 0.x) = x + iy$ $\Rightarrow (x + iy) (1 + i0) = x + iy = (1 + i0) (x + iy).$

Therefore, 1 + i0 acts as the multiplicative identity. It is simply written as 1.

Thus z.1 = z = 1.z for all complex numbers z.

(v) Existence of multiplicative inverse

For every non-zero complex number z = a + ib, we have the complex number

$$\frac{a}{a^2+b^2}-i\frac{b}{a^2+b^2} \text{ (denoted by } z^{-1} \text{ or } \frac{1}{z} \text{) such that}$$

$$z \cdot \frac{1}{z} = 1 = \frac{1}{z} \cdot z \text{ (check it)}$$

 $\frac{1}{z}$ is called the multiplicative inverse of z.

Note that intuitively, $\frac{1}{a+ib} = \frac{1}{a+ib} \times \frac{a-ib}{a-ib} = \frac{a-ib}{a^2+b^2} = \frac{a}{a^2+b^2} - i\frac{b}{a^2+b^2}.$

(vi) Multiplication of complex numbers is distributive over addition of complex numbers If z_1 , z_2 and z_3 are any three complex numbers, then

and
$$z_1(z_2 + z_3) = z_1z_2 + z_1z_3$$
$$(z_1 + z_2)z_3 = z_1z_3 + z_2z_3.$$

These results are known as distributive laws.

Division of complex numbers

Division of a complex number $z_1 = a + ib$ by $z_2 = c + id \neq 0$ is defined as

$$\frac{z_1}{z_2} = z_1 \cdot \frac{1}{z_2} = z_1 \cdot z_2^{-1} = (a+ib) \cdot \left(\frac{c}{c^2+d^2} - i\frac{d}{c^2+d^2}\right) = \frac{ac+bd}{c^2+d^2} + i\frac{bc-ad}{c^2+d^2}.$$

Note that intuitively,

$$\frac{z_1}{z_2} = \frac{a+ib}{c+id} = \frac{a+ib}{c+id} \times \frac{c-id}{c-id} = \frac{(ac+bd)+i(bc-ad)}{c^2+d^2}.$$

For example, if $z_1 = 3 + 4i$ and $z_2 = 5 - 6i$, then

$$\frac{z_1}{z_2} = \frac{3+4i}{5-6i} = \frac{3+4i}{5-6i} \times \frac{5+6i}{5+6i} = \frac{(3\times5-4\times6)+(3\times6+4\times5)i}{5^2-6^2\times i^2}$$
$$= \frac{-9+38i}{25+36} = -\frac{9}{61} + \frac{38}{61}i.$$

Integral powers of a complex number

If z is any complex number, then positive integral powers of z are defined as $z^1 = z$, $z^2 = z.z$, $z^3 = z^2.z$, $z^4 = z^3.z$ and so on.

If z is any non-zero complex number, then negative integral powers of z are defined as:

$$z^{-1} = \frac{1}{z}$$
, $z^{-2} = \frac{1}{z^2}$, $z^{-3} = \frac{1}{z^3}$ etc.

If $z \neq 0$, then $z^0 = 1$.

5.1.2 Powers of *i*

Integral power of *i* are defined as :

$$i^{0} = 1$$
, $i^{1} = i$, $i^{2} = -1$,
 $i^{3} = i^{2}.i = (-1)$ $i = -i$,
 $i^{4} = (i^{2})^{2} = (-1)^{2} = 1$,
 $i^{5} = i^{4}.i = 1.i = i$,
 $i^{6} = i^{4}.i^{2} = 1.(-1) = -1$, and so on.
 $i^{-1} = \frac{1}{i} = \frac{1}{i} \times \frac{i}{i} = \frac{i}{1} = -i$

Remember that $\frac{1}{i} = -i$

$$i^{-2} = \frac{1}{i^2} = \frac{1}{-1} = -1,$$

$$i^{-3} = \frac{1}{i^3} = \frac{1}{i^3} \times \frac{i}{i} = \frac{i}{i^4} = \frac{i}{1} = i$$

$$i^{-4} = \frac{1}{i^4} = \frac{1}{1} = 1$$
, and so on.

Note that $i^4 = 1$ and $i^{-4} = 1$. It follows that for any integer k,

$$i^{4k} = 1$$
, $i^{4k+1} = i$, $i^{4k+2} = i^2 = -1$, $i^{4k+3} = i^3 = -i$.

Also, we note that $i^2 = -1$ and $(-i)^2 = i^2 = -1$.

Therefore, i and -i are both square roots of -1. However, by the symbol $\sqrt{-1}$, we shall mean i only i.e. $\sqrt{-1} = i$.

We observe that i and -i are both the solutions of the equation $x^2 + 1 = 0$.

Similarly,
$$(\sqrt{5}i)^2 = (\sqrt{5})^2 i^2 = 5 (-1) = -5$$
,

and
$$(-\sqrt{5}i)^2 = (-\sqrt{5})^2 i^2 = 5(-1) = -5$$
.

Therefore, $\sqrt{5}i$ and $-\sqrt{5}i$ are both square roots of -5. However, by the symbol $\sqrt{-5}$, we shall mean $\sqrt{5}i$ only *i.e.* $\sqrt{-5}=\sqrt{5}i$.

In general, if a is any positive real number, then $\sqrt{-a} = \sqrt{ai}$.

We already know that $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ for all positive real numbers a and b. This result is also true when either a > 0, b < 0 or a < 0, b > 0. But what if a < 0, b < 0? Let us examine :

we note that $i^2 = i \times i = \sqrt{-1}\sqrt{-1} = \sqrt{(-1)(-1)}$ (by assuming $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ for all real numbers) $= \sqrt{1} = 1$. Thus, we get $i^2 = 1$ which is contrary to the fact that $i^2 = -1$.

Therefore, $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ is **not true** when a and b are both negative real numbers.

Further, if any of a and b is zero, then $\sqrt{a} \times \sqrt{b} = \sqrt{ab} = 0$.

5.1.3 Identities

If z_1 and z_2 are any two complex numbers, then the following results hold:

(i)
$$(z_1 + z_2)^2 = z_1^2 + 2z_1z_2 + z_2^2$$

(ii)
$$(z_1 - z_2)^2 = z_1^2 - 2z_1z_2 + z_2^2$$

(iii)
$$(z_1 + z_2) (z_1 - z_2) = z_1^2 - z_2^2$$

$$(iv) (z_1 + z_2)^3 = z_1^3 + 3z_1^2z_2 + 3z_1z_2^2 + z_2^3$$

$$(v) (z_1 - z_2)^3 = z_1^3 - 3z_1^2z_2 + 3z_1z_2^2 - z_2^3.$$

Proof. (i)
$$(z_1 + z_2)^2 = (z_1 + z_2) (z_1 + z_2)$$

 $= (z_1 + z_2)z_1 + (z_1 + z_2)z_2$ (Distributive law)
 $= z_1^2 + z_2z_1 + z_1z_2 + z_2^2$ (Distributive law)
 $= z_1^2 + z_1z_2 + z_1z_2 + z_2^2$ (Commutative law)
 $= z_1^2 + 2z_1z_2 + z_2^2$.

We leave the proofs of the other results for the reader.

5.1.4 Modulus of a complex number

Modulus of a complex number z = a + ib, denoted by mod(z) or |z|, is defined as

$$|z| = \sqrt{a^2 + b^2}$$
, where $a = \text{Re}(z)$, $b = \text{Im}(z)$.

Sometimes, |z| is called **absolute value** of z. Note that $|z| \ge 0$.

For example:

(i) If
$$z = -3 + 5i$$
, then $|z| = \sqrt{(-3)^2 + 5^2} = \sqrt{34}$.

(ii) If
$$z = 3 - \sqrt{7}i$$
, then $|z| = \sqrt{3^2 + (-\sqrt{7})^2} = \sqrt{9 + 7} = 4$.

Properties of modulus of a complex number

If z, z_1 and z_2 are complex numbers, then

(i)
$$|-z| = |z|$$

(ii)
$$|z| = 0$$
 if and only if $z = 0$

(iii)
$$|z_1 z_2| = |z_1| |z_2|$$

(iv)
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$
, provided $z_2 \neq 0$.

Proof. (i) Let z = a + ib, where $a, b \in \mathbb{R}$, then -z = -a - ib.

$$\therefore \qquad |-z| = \sqrt{(-a)^2 + (-b)^2} = \sqrt{a^2 + b^2} = |z|.$$

(ii) Let
$$z = a + ib$$
, then $|z| = \sqrt{a^2 + b^2}$.

Now
$$|z| = 0$$
 iff $\sqrt{a^2 + b^2} = 0$

i.e. iff
$$a^2 + b^2 = 0$$
 i.e. iff $a^2 = 0$ and $b^2 = 0$

i.e. iff
$$a = 0$$
 and $b = 0$ *i.e.* iff $z = 0 + i0$

i.e. iff
$$z = 0$$
.

(iii) Let
$$z_1 = a + ib$$
, and $z_2 = c + id$, then

$$z_1 z_2 = (ac - bd) + i (ad + bc).$$

$$|z_1 z_2| = \sqrt{(ac - bd)^2 + (ad + bc)^2}$$

$$\sqrt{(a^2+b^2)(c^2+d^2)}$$

$$= \sqrt{a^2 + b^2} \sqrt{c^2 + d^2} \qquad (\because a^2 + b^2 \ge 0, c^2 + d^2 \ge 0)$$

$$= \mid z_1 \mid \mid z_2 \mid.$$

(iv) Here $z_2 \neq 0 \Rightarrow |z_2| \neq 0$.

Let
$$\frac{z_1}{z_2} = z_3 \Rightarrow z_1 = z_2 z_3 \Rightarrow |z_1| = |z_2 z_3|$$

 $\Rightarrow |z_1| = |z_2| |z_3|$ (using part (iii))

$$\Rightarrow \quad \frac{|z_1|}{|z_2|} = |z_3| \Rightarrow \frac{|z_1|}{|z_2|} = \left| \frac{z_1}{z_2} \right| \qquad \qquad \left(\because z_3 = \frac{z_1}{z_2} \right)$$

REMARK

From (iii), on replacing both z_1 and z_2 by z, we get

$$|z z| = |z| |z| i.e. |z^2| = |z|^2$$
.

Similary,
$$|z^3| = |z^2z| = |z^2| |z| = |z|^2 |z| = |z|^3$$
 etc.

5.1.5 Conjugate of a complex number

Conjugate of a complex number z = a + ib, denoted by \bar{z} , is defined as

$$\overline{z} = a - ib$$
 i.e. $\overline{a + ib} = a - ib$.

For example:

(i)
$$\overline{2+5i} = 2-5i$$
, $\overline{2-5i} = 2+5i$

(ii)
$$\overline{-3-7i} = -3 + 7i$$
, $\overline{-3+7i} = -3 - 7i$.

Properties of conjugate of a complex number

If z, z_1 and z_2 are complex numbers, then

(i)
$$\overline{(\overline{z})} = z$$

(ii)
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$
 (iii) $\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}$

(iii)
$$\overline{z_1-z_2} = \overline{z_1} - \overline{z_2}$$

$$(iv) \quad \overline{z_1 z_2} = \overline{z_1} \quad \overline{z_2}$$

(v)
$$\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$$
, provided $z_2 \neq 0$

$$(vi) \mid \overline{z} \mid = \mid z \mid$$

(vii)
$$z \overline{z} = |z|^2$$

(viii)
$$z^{-1} = \frac{\overline{z}}{|z|^2}$$
, provided $z \neq 0$.

Proof. (*i*) Let z = a + ib, where $a, b \in \mathbb{R}$, so that $\overline{z} = a - ib$.

$$\therefore \overline{(\overline{z})} = \overline{a - ib} = a + ib = z.$$

(ii) Let
$$z_1 = a + ib$$
 and $z_2 = c + id$, then

$$\overline{z_1 + z_2} = \overline{(a+ib) + (c+id)} = \overline{(a+c) + i(b+d)}$$

$$= (a+c) - i(b+d) = (a-ib) + (c-id) = \overline{z_1} + \overline{z_2}$$
 (iii) Let $z_1 = a+ib$ and $z_2 = c+id$, then

(iii) Let
$$z_1 = a + ib$$
 and $z_2 = c + id$, then

$$\overline{z_1 - z_2} = \overline{(a+ib) - (c+id)} = \overline{(a-c) + i(b-d)}$$

$$= (a-c) - i(b-d) = (a-ib) - (c-id)$$

$$= \overline{z_1} - \overline{z_2}.$$
(iv) Let $z_1 = a+ib$ and $z_2 = c+id$, then

(iv) Let
$$z_1 = a + ib$$
 and $z_2 = c + id$, then

$$\overline{z_1 z_2} = \overline{(a+ib)(c+id)} = \overline{(ac-bd) + i(ad+bc)}$$
$$= (ac-bd) - i(ad+bc).$$

Also
$$\overline{z_1} \ \overline{z_2} = (a - ib) (c - id) = (ac - bd) - i(ad + bc).$$

Hence
$$\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$$
.

(v) Here $z_2 \neq 0 \Rightarrow \overline{z_2} \neq 0$.

Let
$$\frac{z_1}{z_2} = z_3 \Rightarrow z_1 = z_2 z_3 \Rightarrow \overline{z_1} = \overline{z_2 z_3}$$

$$\Rightarrow \overline{z_1} = \overline{z_2} \overline{z_3}$$

(using part (iv))

$$\Rightarrow \frac{\overline{z_1}}{\overline{z_2}} = \overline{z_3} \Rightarrow \frac{\overline{z_1}}{\overline{z_2}} = \overline{\left(\frac{z_1}{z_2}\right)}$$

$$\left(\because z_3 = \frac{z_1}{z_2}\right)$$

(vi) Let z = a + ib, then $\overline{z} = a - ib$.

$$||\cdot||||\overline{z}|| = \sqrt{a^2 + (-b)^2} = \sqrt{a^2 + b^2} = |z|.$$

(vii) Let
$$z = a + ib$$
, then $\overline{z} = a - ib$.

$$\therefore z \ \overline{z} = (a + ib) (a - ib)$$

$$= (aa - b(-b)) + i(a(-b) + ba)$$

$$= (a^2 + b^2) + i \cdot 0$$

$$= a^2 + b^2 = \left(\sqrt{a^2 + b^2}\right)^2 = |z|^2.$$
(Def. of multiplication)

Remember that $(a + ib) (a - ib) = a^2 + b^2$.

(viii) Let
$$z = a + ib \neq 0$$
, then $|z| \neq 0$.

$$\therefore z \ \overline{z} = (a+ib) (a-ib) = a^2 + b^2 = |z|^2$$

$$\Rightarrow \frac{z \overline{z}}{|z|^2} = 1 \Rightarrow \frac{\overline{z}}{|z|^2} = \frac{1}{z} = z^{-1}$$

Thus,
$$z^{-1} = \frac{\overline{z}}{|z|^2}$$
, provided $z \neq 0$.

REMARK

From (iv), on replacing both z_1 and z_2 by z, we get

$$\overline{z}\overline{z} = \overline{z}\overline{z}$$
 i.e. $\overline{z}^2 = (\overline{z})^2$.

Similarly,
$$(\overline{z^3}) = (\overline{z^2z}) = (\overline{z^2}) \overline{z} = (\overline{z})^2 \overline{z} = (\overline{z})^3$$
 etc.

NOTE

The order relations 'greater than' and 'less than' are not defined for complex numbers i.e. the inequalities 2 + 3i > -2 + 5i, $4i \ge 1 + 2i$, -1 + 3i < 5 etc. are meaningless.

ILLUSTRATIVE EXAMPLES

Example 1. A student says

$$1 = \sqrt{1} = \sqrt{(-1)(-1)} = \sqrt{-1}\sqrt{-1} = i$$
. $i = i^2 = -1$. Thus $1 = -1$.

Where is the fault?

Solution.
$$1 = \sqrt{1 - \sqrt{(-1)(-1)}}$$
 is true, but $\sqrt{(-1)(-1)} = \sqrt{-1}\sqrt{-1}$ is wrong.

Because if both a, b are negative real numbers, then $\sqrt{a}\sqrt{b} = \sqrt{ab}$ is not true.

Example 2. If
$$z = \sqrt{37} + \sqrt{-19}$$
, find $Re(z)$, $Im(z)$, \overline{z} and $|z|$.

Solution. Given
$$z = \sqrt{37} + \sqrt{-19} = \sqrt{37} + i\sqrt{19}$$
.

$$\therefore \qquad \text{Re } (z) = \sqrt{37} \text{ and } \text{Im}(z) = \sqrt{19} .$$

$$\overline{z} = \sqrt{37 + i\sqrt{19}} = \sqrt{37} - i\sqrt{19} .$$

$$|z| = \sqrt{(\sqrt{37})^2 + (\sqrt{19})^2} = \sqrt{37 + 19} = \sqrt{56} = 2\sqrt{14} .$$

Example 3. If 4x + i(3x - y) = 3 - 6i and x, y are real numbers, then find the values of x and y. (NCERT)

Solution. Given
$$4x + i(3x - y) = 3 - 6i$$

 $\Rightarrow 4x + i(3x - y) = 3 + i(-6)$.

Equating real and imaginary parts on both sides, we get

$$4x = 3$$
 and $3x - y = -6$

$$\Rightarrow$$
 $x = \frac{3}{4}$ and $3 \times \frac{3}{4} - y = -6$

$$\Rightarrow$$
 $x = \frac{3}{4} \text{ and } y = 6 + \frac{9}{4} = \frac{33}{4}.$

Hence $x = \frac{3}{4}$ and $y = \frac{33}{4}$.

Example 4. For what real values of x and y are the following numbers equal

(i)
$$(1 + i) y^2 + (6 + i)$$
 and $(2 + i) x$

(ii)
$$x^2 - 7x + 9yi$$
 and $y^2i + 20i - 12$?

Solution. (i) Given $(1 + i) y^2 + (6 + i) = (2 + i) x$

$$\Rightarrow$$
 $(y^2 + 6) + i(y^2 + 1) = 2x + ix$

$$\Rightarrow$$
 $y^2 + 6 = 2x$ and $y^2 + 1 = x$

$$\Rightarrow$$
 $x = 5$ and $y^2 = 4 \Rightarrow x = 5$ and $y = \pm 2$.

Hence, the required values of x and y are

$$x = 5$$
, $y = 2$; $x = 5$, $y = -2$.

(ii) Given
$$x^2 - 7x + 9yi = y^2i + 20i - 12$$

$$\Rightarrow$$
 $(x^2 - 7x) + i(9y) = (-12) + i(y^2 + 20)$

$$\Rightarrow$$
 $x^2 - 7x = -12$ and $9y = y^2 + 20$

$$\Rightarrow$$
 $x^2 - 7x + 12 = 0$ and $y^2 - 9y + 20 = 0$

$$\Rightarrow$$
 $(x-4)(x-3)=0$ and $(y-5)(y-4)=0$

$$\Rightarrow$$
 $x = 4$, 3 and $y = 5$, 4.

Hence, the required values of x and y are

$$x = 4$$
, $y = 5$; $x = 4$, $y = 4$; $x = 3$, $y = 5$; $x = 3$, $y = 4$.

Example 5. Express each of the following in the standard form a + ib:

(i)
$$\left(\frac{1}{3} + i\frac{7}{3}\right) + \left(4 + i\frac{1}{3}\right) - \left(-\frac{4}{3} + i\right)$$
 (ii) $3(7 + i7) + i(7 + i7)$ (NCERT)

(iii) $(-2 + \sqrt{-3})(-3 + 2\sqrt{-3})$ (iv) $\frac{(3 + i\sqrt{5})(3 - i\sqrt{5})}{(\sqrt{3} + \sqrt{2}i) - (\sqrt{3} - i\sqrt{2})}$

$$(ii) \ 3(7+i7)+i(7+i7)$$

con

(NCERT)

(iii)
$$(-2 + \sqrt{-3})$$
 $(-3 + 2\sqrt{-3})$

(iv)
$$\frac{(3+i\sqrt{5})(3-i\sqrt{5})}{(\sqrt{3}+\sqrt{2}i)-(\sqrt{3}-i\sqrt{2})}.$$
 (NCERT)

Solution. (i)
$$\left(\frac{1}{3} + i\frac{7}{3}\right) + \left(4 + i\frac{1}{3}\right) - \left(-\frac{4}{3} + i\right)$$

$$= \left(\frac{1}{3} + i\frac{7}{3}\right) + \left(4 + i\frac{1}{3}\right) + \left(\frac{4}{3} - i\right)$$

$$= \left(\frac{1}{3} + 4 + \frac{4}{3}\right) + i\left(\frac{7}{3} + \frac{1}{3} - 1\right) = \frac{17}{3} + \frac{5}{3}i.$$

(ii)
$$3(7 + i7) + i(7 + i7) = (21 + 21i) + (7i + 7i^2)$$

= $21 + 21i + 7i + 7(-1) = (21 - 7) + (21 + 7)i$
= $14 + 28i$.

(iii)
$$(-2 + \sqrt{-3})(-3 + 2\sqrt{-3}) = (-2 + \sqrt{3} i) (-3 + 2\sqrt{3} i)$$

= $(6 - 2\sqrt{3} \sqrt{3}) + (-3\sqrt{3} - 4\sqrt{3})i$
= $0 - 7\sqrt{3} i$.

$$(iv) \quad \frac{(3+i\sqrt{5})(3-i\sqrt{5})}{(\sqrt{3}+\sqrt{2}i)-(\sqrt{3}-i\sqrt{2})} = \frac{(3)^2+(\sqrt{5})^2}{\sqrt{2}i+\sqrt{2}i} \qquad ((a+ib)(a-ib)=a^2+b^2)$$

$$= \frac{9+5}{2\sqrt{2}i} = \frac{14}{2\sqrt{2}} \cdot \frac{1}{i} = \frac{7}{\sqrt{2}}(-i) \qquad (\because \frac{1}{i}=-i)$$

$$= 0 - \frac{7}{\sqrt{2}}i.$$

Example 6. Express the following in the form a + ib:

(i)
$$(-i)$$
 (2i) $\left(-\frac{1}{8}i\right)^3$ (NCERT) (ii) i^{102} (iii) i^{-39} (NCERT) (iv) $\left(-\sqrt{-1}\right)^{31}$ (v) $i^9 + i^{19}$ (NCERT) (vi) $i^{35} + \frac{1}{i^{35}}$.

Solution. (i)
$$(-i)$$
 $(2i)$ $\left(-\frac{1}{8}i\right)^3 = (-1)^4 \times 2 \times \left(\frac{1}{8}\right)^3 \times i^5$

$$= 1 \times 2 \times \frac{1}{512} \times i^4 \times i$$

$$= \frac{1}{256} \times 1 \times i = 0 + \frac{1}{256}i.$$

(ii)
$$i^{102} = i^{4 \times 25 + 2} = i^{2}$$

= $-1 = -1 + i0$.

(iii)
$$i^{-39} = i^{4 \times (-10) + 1} = i$$

= 0 + i. (:: $i^{4k+1} = i, k \in I$)

$$(iv) \left(-\sqrt{-1}\right)^{31} = (-i)^{31} = (-1)^{31} \quad i^{31}$$

$$= -i^{4 \times 7 + 3} = -i^{3}$$

$$= -i^{2} \cdot i = -(-1) \quad i = i = 0 + i.$$

$$(v) \quad i^{9} + i^{19} = i^{2 \times 4 + 1} + i^{4 \times 4 + 3} = i + i^{3}$$

$$(\because i^{4k+3} = i^{3}, k \in \mathbf{I})$$

(v)
$$i^9 + i^{19} = i^{2 \times 4 + 1} + i^{4 \times 4 + 3} = i + i^3$$

= $i + i^2$. $i = i + (-1)i = 0 = 0 + i0$.

(vi)
$$i^{35} + \frac{1}{i^{35}} = i^{35} + i^{-35} = i^{4 \times 8 + 3} + i^{4 \times (-9) + 1}$$

= $i^3 + i = i^2 i + i = (-1)i + i$
= $0 = 0 + i0$.

Example 7. Express each of the following in the standard form a + ib:

(i)
$$(1-i)^4$$
 (NCERT) (ii) $\left(-2-\frac{1}{3}i\right)^3$ (NCERT)

(iii)
$$(2i - i^2)^2 + (1 - 3i)^3$$
 (iv) $\left(iv + \left(\frac{1}{i}\right)^{25}\right)^3$ (NCERT)

(v)
$$(1 + i)^6 + (1 - i)^3$$
 (NCERT Examplar Problems)
Solution. (i) $(1 - i)^4 = ((1 - i)^2)^2 = (1 + i^2 - 2i)^2$

$$= (1 + (-1) - 2i)^2 = (-2i)^2 = 4i^2$$

$$= 4 (-1) = -4 = -4 + i0.$$

(ii)
$$\left(-2 - \frac{1}{3}i\right)^3 = (-1)^3 \left(2 + \frac{1}{3}i\right)^3$$

$$= -\left[2^3 + 3 \times 2^2 \times \frac{1}{3}i + 3 \times 2 \times \left(\frac{1}{3}i\right)^2 + \left(\frac{1}{3}i\right)^3\right]$$

$$= -\left[8 + 4i + \frac{2}{3}i^2 + \frac{1}{27}i^3\right]$$

$$= -\left[8 + 4i + \frac{2}{3}(-1) + \frac{1}{27}(-i)\right]$$

$$= -\left[\frac{22}{3} + \frac{107}{27}i\right] = -\frac{22}{3} - \frac{107}{27}i.$$
(iii) $(2i - i^2)^2 + (1 - 3i)^3 = (2i + 1)^2 + (1 - 3i)^3$

$$= (4i^2 + 4i + 1) + (1 - 9i + 27i^2 - 27i^3)$$

$$= -4 + 4i + 1 + 1 - 9i - 27 + 27i = -29 + 22i.$$
(iv) $\left(i^{18} + \left(\frac{1}{i}\right)^{25}\right)^3 = \left(i^4 \times 4 + 2 + (-i)^{25}\right)^3$

$$= \left(i^2 + (-1)^{25}i^{25}\right)^3 = (-1 - i^{4 \times 6 + 1})^3$$

$$= (-1 - i)^3 = (-1)^3(1 + i)^3$$

$$= -\left[1 + 3i + 3i^2 + i^3\right]$$

$$= -\left[1 + 3i - 3 - i\right] = -(-2 + 2i)$$

$$= 2 - 2i.$$
(v) $(1 + i)^6 = ((1 + i)^2)^3 = (1 + i^2 + 2i)^3 = (1 - 1 + 2i)^3 = (2i)^3$

$$= 8i^3 = 8(-i) = -8i$$
and $(1 - i)^3 = 1 - i^3 - 3i + 3i^2 = 1 - (-i) - 3i + 3(-1)$

$$= 2 - 2i.$$
(v) $(1 + i)^6 = ((1 + i)^2)^3 = (1 + i^2 + 2i)^3 = (1 - 1 + 2i)^3 = (2i)^3$

$$= 8i^3 = 8(-i) = -8i$$
and $(1 - i)^3 = 1 - i^3 - 3i + 3i^2 = 1 - (-i) - 3i + 3(-1)$

$$= -2 - 2i$$

$$\therefore (1 + i)^6 + (1 - i)^3 = -8i + (-2 - 2i) = -2 - 10i.$$

Example 8. Find the multiplicative inverse of $\sqrt{5} + 3i$. (NCERT)

Solution. Let $z = \sqrt{5} + 3i$,

then $\overline{z} = \sqrt{5} - 3i$ and $|z|^2 = (\sqrt{5})^2 + 3^2 = 5 + 9 = 14$.

We know that the multiplicative inverse of z is given by

$$z^{-1} = \frac{\bar{z}}{|z|^2} = \frac{\sqrt{5} - 3i}{14} = \frac{\sqrt{5}}{14} - \frac{3}{14}i.$$

Alternatively

$$z^{-1} = \frac{1}{z} = \frac{1}{\sqrt{5} + 3i} = \frac{1}{\sqrt{5} + 3i} \times \frac{\sqrt{5} - 3i}{\sqrt{5} - 3i}$$
$$= \frac{\sqrt{5} - 3i}{(\sqrt{5})^2 - (3i)^2} = \frac{\sqrt{5} - 3i}{5 - 9(-1)} = \frac{\sqrt{5} - 3i}{14} = \frac{\sqrt{5}}{14} - \frac{3}{14}i.$$

Example 9. Express the following in the form a + ib:

(i)
$$\frac{i}{1+i}$$
 (ii) $\frac{5+\sqrt{2}i}{1-\sqrt{2}i}$ (NCERT) (iii) $\left(\frac{1}{1-4i} - \frac{2}{1+i}\right)\left(\frac{3-4i}{5+i}\right)$ (NCERT) (iv) $\frac{(1+i)(3+i)}{3-i} - \frac{(1-i)(3-i)}{3+i}$.

Solution. (i)
$$\frac{i}{1+i} = \frac{i}{1+i} \times \frac{1-i}{1-i} = \frac{i-i^2}{1-i^2} = \frac{i-(-1)}{1-(-1)} = \frac{1+i}{2} = \frac{1}{2} + \frac{1}{2}i$$
.

(ii)
$$\frac{5 + \sqrt{2}i}{1 - \sqrt{2}i} = \frac{5 + \sqrt{2}i}{1 - \sqrt{2}i} \times \frac{1 + \sqrt{2}i}{1 + \sqrt{2}i} = \frac{5 + 5\sqrt{2}i + \sqrt{2}i + 2i^2}{1^2 - (\sqrt{2}i)^2}$$
$$= \frac{5 + 6\sqrt{2}i - 2}{1 - 2(-1)} = \frac{3 + 6\sqrt{2}i}{3} = 1 + 2\sqrt{2}i.$$

(iii)
$$\left(\frac{1}{1-4i} - \frac{2}{1+i}\right) \left(\frac{3-4i}{5+i}\right) = \frac{1+i-2+8i}{(1-4i)(1+i)} \times \frac{3-4i}{5+i}$$

$$= \frac{-1+9i}{1+i-4i+4} \times \frac{3-4i}{5+i} = \frac{(-1+9i)(3-4i)}{(5-3i)(5+i)}$$

$$= \frac{-3+4i+27i+36}{25+5i-15i+3} = \frac{33+31i}{28-10i}$$

$$= \frac{33+31i}{28-10i} \times \frac{28+10i}{28+10i} = \frac{33\times28+330i+31\times28i-310}{(28)^2-(10i)^2}$$

$$= \frac{924-310+(330+868)i}{784-100(-1)} = \frac{614+1198i}{884} = \frac{307}{442} + \frac{599}{442}i.$$

$$(iv) \quad \frac{(1+i)(3+i)}{3-i} - \frac{(1-i)(3-i)}{3+i} = \frac{(1+i)(3+i)(3+i)-(1-i)(3-i)(3-i)}{(3-i)(3+i)}$$

$$(iv) \quad \frac{(1+i)(3+i)}{3-i} - \frac{(1-i)(3-i)}{3+i} = \frac{(1+i)(3+i)(3+i) - (1-i)(3-i)(3-i)}{(3-i)(3+i)}$$

$$= \frac{(1+i)(8+6i) - (1-i)(8-6i)}{9-i^2}$$

$$= \frac{(2+14i) - (2-14i)}{9+1} = \frac{28i}{10} = 0 + \frac{14}{5}i.$$

Example 10. (i) If $\frac{(1+i)^2}{2-i} = x + iy$, then find the value of x + y. (NCERT Examplar Problems)

(ii) If
$$\left(\frac{1+i}{1-i}\right)^3 - \left(\frac{1-i}{1+i}\right)^3 = x + iy$$
, then find (x, y) . (NCERT Examplar Problems)

(iii) If
$$\left(\frac{1-i}{1+i}\right)^{100} = a + ib$$
, then find (a, b) . (NCERT Examplar Problems)

Solution. (i)
$$x + iy = \frac{(1+i)^2}{2-i} = \frac{1+i^2+2i}{2-i} = \frac{1-1+2i}{2-i} = \frac{2i}{2-i}$$

$$= \frac{2i}{2-i} \times \frac{2+i}{2+i} = \frac{4i+2i^2}{2^2-i^2} = \frac{4i+2(-1)}{4-(-1)}$$

$$= \frac{-2+4i}{5} = -\frac{2}{5} + \frac{4}{5}i.$$

$$\Rightarrow x = -\frac{2}{5} \text{ and } y = \frac{4}{5}.$$

$$\therefore x + y = -\frac{2}{5} + \frac{4}{5} = \frac{2}{5}.$$

(ii) We have,
$$\frac{1+i}{1-i} = \frac{1+i}{1-i} \times \frac{1+i}{1+i} = \frac{(1+i)^2}{1^2 - i^2}$$
$$= \frac{1+i^2 + 2i}{1 - (-1)} = \frac{1-1+2i}{2} = \frac{2i}{2} = i$$

$$\therefore \quad \frac{1-i}{1+i} = \frac{1}{i} = -i \qquad \left(\because \frac{1}{i} = -i\right)$$

Given
$$x + iy = \left(\frac{1+i}{1-i}\right)^3 - \left(\frac{1-i}{1+i}\right)^3 = i^3 - (-i)^3 = i^3 + i^3$$

= $2i^3 = 2(-i) = 0 - 2i$

 \Rightarrow x = 0 and y = -2.

Hence, the orders pair (x, y) is (0, -2).

(iii) Given
$$a + ib = \left(\frac{1-i}{1+i}\right)^{100} = (-i)^{100}$$
 (see part (ii))
= $(-1)^{100} (i)^{4 \times 25} = 1 \times 1 = 1 = 1 + 0i$

 \Rightarrow a = 1 and b = 0.

Hence, the ordered pair (a, b) is (1, 0).

Example 11. (i) If $(1 + i)z = (1 - i)\overline{z}$, then show that $z = -i\overline{z}$. (NCERT Examplar Problems)

(ii) If
$$z_1 = 2 - i$$
 and $z_2 = -2 + i$, find $Re\left(\frac{z_1z_2}{\overline{z}_1}\right)$. (NCERT)

Solution. (*i*) Given $(1 + i)z = (1 - i)\overline{z}$

$$\Rightarrow \frac{z}{\overline{z}} = \frac{1-i}{1+i} = \frac{1-i}{1+i} \times \frac{1-i}{1-i} = \frac{(1-i)^2}{1^2-i^2} = \frac{1+i^2-2i}{1-(-1)}$$

$$\Rightarrow \quad \frac{z}{\overline{z}} = \frac{1 - 1 - 2i}{2} = -\frac{2i}{2} = -i$$

$$\Rightarrow$$
 $z = -i\overline{z}$.

(ii)
$$\frac{z_1 z_2}{\overline{z}_1} = \frac{(2-i)(-2+i)}{\overline{2-i}} = \frac{-4+2i+2i-i^2}{2+i} = \frac{-4+4i-(-1)}{2+i}$$

$$= \frac{-3+4i}{2+i} = \frac{-3+4i}{2+i} \times \frac{2-i}{2-i}$$

$$= \frac{-6+3i+8i-4i^2}{2^2-i^2} = \frac{-6+11i-4(-1)}{4-(-1)}$$

$$= \frac{-2+11i}{5} = -\frac{2}{5} + \frac{11}{5}i.$$

$$\operatorname{Re}\left(\frac{z_1 z_2}{\bar{z}_1}\right) = -\frac{2}{5}.$$

Example 12. (i) Find the conjugate of
$$\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$$
 (NCERT)

(ii) Find the modulus of
$$\frac{1+i}{1-i} - \frac{1-i}{1+i}$$
 (NCERT)

(iii) Find the modulus of
$$\frac{(2-3i)^2}{-1+5i}$$

Solution. (i) Let
$$z = \frac{(3-2i)(2+3i)}{(1+2i)(2-i)} = \frac{6+9i-4i+6}{2-i+4i+2}$$

$$= \frac{12+5i}{4+3i} = \frac{12+5i}{4+3i} \times \frac{4-3i}{4-3i} = \frac{48-36i+20i+15}{4^2-(3i)^2}$$

$$= \frac{63-16i}{16-9(-1)} = \frac{63-16i}{25} = \frac{63}{25} - \frac{16}{25}i.$$

$$\therefore$$
 Conjugate of $z = \frac{63}{25} + \frac{16}{25}i$.

Example 32. If α and β are different complex numbers with $|\beta| = 1$, then find $\left| \frac{\beta - \alpha}{1 - \overline{\alpha}\beta} \right|$.

(NCERT)

Solution. We have
$$\left|\frac{\beta-\alpha}{1-\overline{\alpha}\beta}\right| = \left|\frac{(\beta-\alpha)\overline{\beta}}{(1-\overline{\alpha}\beta)\overline{\beta}}\right|$$
 (Note this step)
$$= \left|\frac{(\beta-\alpha)\overline{\beta}}{\overline{\beta}-\overline{\alpha}\beta\overline{\beta}}\right| = \left|\frac{(\beta-\alpha)\overline{\beta}}{\overline{\beta}-\overline{\alpha}}\right|$$
 (Given $|\beta|=1 \Rightarrow |\beta|^2=1 \Rightarrow \beta\overline{\beta}=1$)
$$= \frac{|(\beta-\alpha)\overline{\beta}|}{|\overline{\beta}-\overline{\alpha}|}$$
 ($\because |z_1| = \frac{|z_1|}{|z_2|}$)
$$= \frac{|\beta-\alpha||\overline{\beta}|}{|\beta-\alpha|}$$
 ($\because |z_1-z_2| = \overline{z_1-z_2}$)
$$= \frac{|\beta-\alpha||\beta|}{|\beta-\alpha|}$$
 ($\because |z_1-z_2| = \overline{z_1-z_2}$)
$$= |\beta|=1$$
 ($|\beta|=1$, given)

Hence, $\left| \frac{\beta - \alpha}{1 - \overline{\alpha} \beta} \right| = 1$.

Example 33. If $|z_1| = |z_2| = \dots = |z_n| = 1$, prove that

$$|z_1 + z_2 + ... + z_n| = \left|\frac{1}{z_1} + \frac{1}{z_2} + ... + \frac{1}{z_n}\right|$$
 (NCERT Examplar Problems)

Solution. Given $|z_1| = |z_2| = ... = |z_n| = 1$

$$\Rightarrow$$
 $|z_1|^2 = |z_2|^2 = \dots = |z_n|^2 = 1$

$$\Rightarrow z_1 \overline{z_1} = 1, z_2 \overline{z_2} = 1, ..., z_n \overline{z_n} = 1$$

$$\Rightarrow \frac{1}{z_1} = \overline{z_1}, \ \frac{1}{z_2} = \overline{z_2}, \dots, \frac{1}{z_n} = \overline{z_n},$$

EXERCISE 5.1

Very short answer type questions (1 to 31):

- 1. Evaluate the following:
 - (i) $\sqrt{-9} \times \sqrt{-4}$
- (ii) $\sqrt{(-9)(-4)}$ (iii) $\sqrt{-25} \times \sqrt{16}$

(*iv*)
$$3\sqrt{-16}\sqrt{-25}$$

(v)
$$\sqrt{-16} + 3\sqrt{-25} + \sqrt{-36} - \sqrt{-625}$$
.

- **2.** If z = -3 i, find Re(z), Im(z), \overline{z} and |z|.
- 3. If $z^2 = -i$, then is it true that $z = \pm \frac{1}{\sqrt{2}}(1-i)$?
- **4.** If $z^2 = -3 + 4i$, then is it true that $z = \pm (1 + 2i)$?
- 5. If $i = \sqrt{-1}$, then show that $(x + 1 + i)(x + 1 i) = x^2 + 2x + 2$.
- **6.** Find real values of *x* and *y* if
 - (i) 2y + (3x y)i = 5 2i

(ii)
$$(3x-1) + (\sqrt{3} + 2y) i = 5$$

(iii) (3y - 2) + i(7 - 2x) = 0.

- 7. If $x, y \in \mathbb{R}$ and (5y 2) + i(3x y) = 3 7i, find the values of x and y.
- 8. If x, y are reals and (3y + 2) + i(x + 3y) = 0, find the values of x and y.
- **9.** If x, y are reals and (1-i)x + (1+i)y = 1-3i, find the values of x and y.
- **10.** For any two complex numbers z_1 and z_2 , prove that

$$Re(z_1z_2) = Re(z_1) Re(z_2) - Im(z_1) Im(z_2).$$
 (NCERT)

11. For any complex number z, prove that

$$Re(z) = \frac{z + \overline{z}}{2}$$
 and $Im(z) = \frac{z - \overline{z}}{2i}$.

12. If z is a complex number, show that $\frac{z-\overline{z}}{2i}$ is real.

Express the following (13 to 20) complex numbers in the standard form a + ib:

13. (i)
$$(-5i)\left(\frac{1}{8}i\right)$$
 (NCERT) (ii) $(5i)\left(-\frac{3}{5}i\right)$. (NCERT)

14. (i)
$$(1-i) - (-1+6i)$$
 (NCERT) (ii) $\left(\frac{1}{5} + i\frac{2}{5}\right) - \left(4 + i\frac{5}{2}\right)$. (NCERT)

15. (i)
$$(-2+3i)+3(-\frac{1}{2}i+1)-(2i)$$
 (ii) $(7+i5)$ (7 - i5).

16. (i)
$$(-\sqrt{3} + \sqrt{-2})(2\sqrt{3} - i)$$
 (NCERT) (ii) $(-5 + 3i)^2$.

17. (i)
$$\left(\frac{1}{2} + 2i\right)^3$$
 (NCERT)

18. (i)
$$\left(\frac{1}{3} + 3i\right)^3$$
 (NCERT) (ii) $(\sqrt{5} + 7i) (\sqrt{5} - 7i)^2$.

19. (i) i^{99} (NC

19. (i)
$$i^{99}$$
 (ii) i^{-35} . (NCERT)

20. (i)
$$(-\sqrt{-4})^3$$
 (ii) $i + i^2 + i^3 + i^3 + i^4 + i^$

- **21.** Find the value of $(-1 + \sqrt{-3})^2 + (-1 \sqrt{-3})^2$
- **22.** If n is any integer, then find the value of

(i)
$$(-\sqrt{-1})^{4n+3}$$
 (ii) $\frac{i^{4n+1}-i^{4n-1}}{2}$. (NCERT Examplar Problems)

(NCERT)

- **23.** Find the multiplicative inverse of -i.
- **24.** Express the following numbers in the form a + ib, a, $b \in \mathbb{R}$:

$$(i) \frac{i}{1+i} \qquad \qquad (ii) \frac{1-i}{1+i}.$$

- **25.** If (a + ib) (c + id) = A + iB, then show that $(a^2 + b^2)$ $(c^2 + d^2) = A^2 + B^2$.
- 26. Find the modulus of the following complex numbers :

(i)
$$(3-4i)(-5+12i)$$
 (ii) $\frac{5-12i}{-3+4i}$

27. Find the modulus of the following:

(i)
$$\frac{(2-3i)^2}{4+3i}$$
 (ii) $(\sqrt{7}-3i)^3$.

- **28.** (*i*) If $z = 3 \sqrt{7}i$, then find $|z^{-1}|$.
 - (ii) If z = x + iy, x, $y \in \mathbb{R}$, then find |iz|.
- **29.** Find the conjugate of i^7 .
- **30.** Write the conjugate of (2 + 3i)(1 2i) in the form a + ib, $a, b \in \mathbb{R}$.
- **31.** Solve for $x : |1 + i|^x = 2$. Express the following (32 and 33) complex numbers in the standard form a + ib:

32. (i)
$$i^{55} + i^{60} + i^{65} + i^{70}$$
 (ii) $\frac{i + i^2 + i^4}{1 + i^2 + i^4}$.

44. If
$$a + ib = \frac{(x+i)^2}{2x^2+1}$$
, then prove that $a^2 + b^2 = \frac{(x^2+1)^2}{(2x^2+1)^2}$.

45. If z = 1 + 2i, then find the value of $z^3 + 7z^2 - z + 16$.

46. Show that if
$$\left| \frac{z-5i}{z+5i} \right| = 1$$
, then z is a real number.

47. (i) If
$$z = x + iy$$
 and $\left| \frac{z-2}{z-3} \right| = 2$, show that $3(x^2 + y^2) - 20x + 32 = 0$.

(NCERT Examplar Problems)

(ii) If
$$z = x + iy$$
 and $\frac{|z-1-i|+4}{3|z-1-i|-2} = 1$, show that $x^2 + y^2 - 2x - 2y = 7$.

- **48.** Find the least positive integral value of n for which $\left(\frac{1+i}{1-i}\right)^n$ is a real number.
- **49.** Find the real value of θ such that $\frac{1+i\cos\theta}{1-2i\cos\theta}$ is a real number.
- **50.** If z is a complex number such that |z| = 1, prove that $\frac{z-1}{z+1}$ ($z \neq -1$) is purely imaginary. What is the exception? (NCERT Examplar Problems)
- **51.** If z_1 , z_2 and z_3 are complex numbers such that $|z_1| = |z_2| = |z_3| = |z_3| = 1$, then find the value of $|z_1 + z_2 + z_3|$. (*NCERT Examplar Problems*)

5.2 ARGAND PLANE

We know that corresponding to every real number there exists a unique point on the number line (called real axis) and conversely corresponding to every point on the line there exists a unique real number *i.e.* there is a one-one correspondence between the set **R** of real numbers and the points on the real axis.

In a similar way, corresponding to every ordered pair (x, y) of real numbers there exists a unique point P in the coordinate plane with x as **abscissa** and y as **ordinate** of the point P and conversely corresponding to every point P in the plane there exists a unique ordered pair of real numbers. Thus, there is a one-one correspondence between the set of ordered pairs $\{(x, y); x, y \in \mathbf{R}\}$ and the points in the coordinate plane.

The point P with co-ordinates (x, y) is said to represent the complex number z = x + iy.

It follows that the complex number z = x + iy can be uniquely represented by the point P(x, y) in the co-ordinate plane and conversely corresponding to the point P(x, y) in the plane there exists a unique complex number z = x + iy. The co-ordinate plane that represents the complex numbers is called the **complex plane** or **Argand plane**.

The complex numbers 3, -2, 2i, -2i, 2+3i, 2-3i, -2+3i and -3-3i which correspond to the ordered pairs (3,0), (-2,0), (0,2), (0,-2), (2,3), (2,-3), (-2,3) and (-3,-3) respectively have been represented geometrically in the coordinate plane by the points A, B, C, D, E, F, G and H respectively in fig. 5.2.

Note that every real number x = x + 0i is represented by point (x, 0) lying on x-axis, and every purely imaginary number iy is represented by point (0, y) lying on y-axis. Consequently, x-axis is called the **real axis** and y-axis is called the **imaginary axis**.

If the point P(x, y) represents the complex number z = x + iy, then the distance between the points P and the origin O $(0, 0) = \sqrt{x^2 + y^2} = |z|$. Thus, the modulus of z *i.e.* |z| is the distance between points P and O (see fig. 5.3).

Geometric representation of -z, \overline{z} and $-\overline{z}$. If z = x + iy, $x, y \in \mathbf{R}$ is represented by the point P(x, y) in the complex plane, then the complex numbers -z, \overline{z} , $-\overline{z}$ are represented by the points P'(-x, -y), Q(x, -y) and Q'(-x, y) respectively in the complex plane (see fig. 5.4.).

Geometrically, the point Q(x, -y) is the mirror image of the point P(x, y) in the real axis. Thus, conjugate of z i.e. \bar{z} is the mirror image of z in the x-axis.

5.3 POLAR REPRESENTATION OF COMPLEX NUMBERS

Let the point P (x, y) represent the non-zero complex number z = x + iy in the Argand plane. Let the directed line segment OP be of length r > 0 and θ be the radian measure of the angle which OP makes with the positive direction of x-axis (shown in fig. 5.5). Then

 $r = \sqrt{x^2 + y^2} = |z|$ and is called *modulus* of z; and θ is called *amplitude* or *argument* of z and is written as amp(z) or arg(z).

From figure 5.5, we see that

$$x = r \cos \theta$$
 and $y = r \sin \theta$

$$\therefore z = x + iy = r\cos\theta + ir\sin\theta = r(\cos\theta + i\sin\theta).$$

Thus, $z = r(\cos \theta + i \sin \theta)$. This form of z is called *polar form* of the complex number z.

For any non-zero complex number z, there corresponds only one value of θ in $-\pi < \theta \le \pi$ (see fig. 5.6). The unique value of θ such that $-\pi < \theta \le \pi$ is called **principal value** of **amplitude** or **argument**.

Thus every (non-zero) complex number z = x + iy can be uniquely expressed as $z = r(\cos \theta + i \sin \theta)$ where r > 0 and $-\pi < \theta \le \pi$ and conversely, for every r > 0 and θ such that $-\pi < \theta \le \pi$, we get a unique (non-zero) complex number $z = r(\cos \theta + i \sin \theta) = x + iy$.

Note that the complex number zero cannot be put into the form $r(\cos \theta + i \sin \theta)$ and so, the argument of zero complex number does not exist.

REMARK

If we take origin as the pole and the positive direction of the *x*-axis as the initial line, then the point P is uniquely determined by the ordered pair of real numbers (r, θ) , called the **polar co-ordinates** of the point P (see fig. 5.6).

ILLUSTRATIVE EXAMPLES

Example 1. Convert the following complex numbers in the polar form and represent them in Argand plane:

(i)
$$\sqrt{3} + i$$
 (NCERT) (ii) $-\sqrt{3} + i$ (NCERT) (iii) $-1 - i\sqrt{3}$ (NCERT) (iv) $2 - 2i$ (V) -3 (NCERT) (vi) $-5i$.

Solution. (i) Let $z = \sqrt{3} + i = r (\cos \theta + i \sin \theta)$.

Then $r \cos \theta = \sqrt{3}$ and $r \sin \theta = 1$.

On squaring and adding, we get

$$r^{2} (\cos^{2} \theta + \sin^{2} \theta) = (\sqrt{3})^{2} + 1^{2}$$

 $\Rightarrow r^{2} = 4 \Rightarrow r = 2.$

$$\therefore \quad \cos \theta = \frac{\sqrt{3}}{2} \text{ and } \sin \theta = \frac{1}{2}.$$

The value of θ such that $-\pi < \theta \le \pi$ and satisfying both the above equations is given by $\theta = \frac{\pi}{6}$.

Hence, $z = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$, which is the required polar form.

The complex number $z = \sqrt{3} + i$ is represented in fig. 5.7.

ANSWERS

EXERCISE 5.1

$$(v) \ 0$$

2.
$$-3$$
; -1 ; $-3 + i$; $\sqrt{10}$. **3.** Yes

6. (i)
$$x = \frac{1}{6}$$
, $y = \frac{5}{2}$ (ii) $x = 2$, $y = -\frac{\sqrt{3}}{2}$ (iii) $x = \frac{7}{2}$, $y = \frac{2}{3}$

(ii)
$$x = 2, y = -\frac{\sqrt{3}}{2}$$

(iii)
$$x = \frac{7}{2}$$
, $y = \frac{2}{3}$

7.
$$x = -2$$
, $y = 3$

7.
$$x = -2$$
, $y = 1$ 8. $x = 2$, $y = -\frac{2}{3}$ 9. $x = 2$, $y = -1$

9.
$$x = 2, y = -1$$

13. (i)
$$\frac{5}{8} + i0$$

$$(ii) \ 3 + i0$$

13. (i)
$$\frac{5}{8} + i0$$
 (ii) $3 + i0$ **14.** (i) $2 - 7i$ (ii) $-\frac{19}{5} - \frac{21}{10}i$

15. (i)
$$1 - \frac{1}{2}i$$

$$(ii)$$
 74 + $i0$

15. (i)
$$1 - \frac{1}{2}i$$
 (ii) $74 + i0$ **16.** (i) $(-6 + \sqrt{2}) + \sqrt{3}(1 + 2\sqrt{2})i$ (ii) $16 - 30i$

17. (i)
$$-\frac{47}{8} - \frac{13}{2}i$$
 (ii) $-10 - 198i$ **18.** (i) $-\frac{242}{27} - 26i$ (ii) $54\sqrt{5} - 378i$

$$(11)$$
 $-10 - 198$

$$(ii) 0 + i$$

20. (i)
$$0 + 8$$

19. (i)
$$0 - i$$
 (ii) $0 + i$ 20. (i) $0 + 8i$ (ii) $0 + i$ 0
21. -4 22. (i) i (ii) i 23. i
24. (i) $\frac{1}{2} + \frac{1}{2}i$ (ii) $0 - i$ 26. (i) 65

(ii)
$$\frac{13}{5}$$

27. (i)
$$\frac{13}{5}$$

28. (i)
$$\frac{1}{4}$$

(ii)
$$\sqrt{x^2 + y^2}$$

30
$$8 + i$$

24. (i)
$$\frac{1}{2} + \frac{1}{2}i$$
 (ii) $0 - i$ 26. (i) 65 (ii) $\frac{13}{5}$

27. (i) $\frac{13}{5}$ (ii) 64 28. (i) $\frac{1}{4}$ (ii) $\sqrt{x^2 + y^2}$

29. i 30. $8 + i$ 31. 2

32. (i) $0 + i0$ (ii) $0 + i$ 33. (i) $1 - i$ (ii) $16 + i0$

34. (i) $\frac{2}{13} + \frac{3}{13}i$ (ii) $\frac{4}{25} + \frac{3}{25}i$ (iii) $\frac{3}{16} - \frac{\sqrt{7}}{16}i$

35. (i)
$$\frac{21}{25} - \frac{47}{25}i$$
 (ii) $\frac{1}{4}$

(ii)
$$-\frac{1}{4} - \frac{\sqrt{3}}{4}i$$

$$\frac{\sqrt{3}}{4}i$$
 (iii) $\frac{2}{5} + \frac{29}{5}i$

$$(iv) \frac{8}{65} + \frac{1}{65}i$$
 $(v) \frac{1}{2} +$

$$(v) \frac{1}{2} + \frac{1}{2}$$

$$(vi)$$
 $\frac{63}{25} - \frac{16}{25}i$

36. (i)
$$\frac{40}{41} - \frac{9}{41}i$$
; $\frac{40}{41} + \frac{9}{41}i$; 1 (ii) $1 + i$; $1 - i$; $\sqrt{2}$

(*ii*)
$$1 + i$$
; $1 - i$; $\sqrt{2}$

(iii)
$$-1 + i$$
; $-1 - i$; $\sqrt{2}$

(iii)
$$-1 + i$$
; $-1 - i$; $\sqrt{2}$ (iv) $-9 + 46i$; $-9 - 46i$; $\sqrt{2197}$

37. (i)
$$0 + \frac{1}{2}i$$
 (iii) 1 (iv) 2^n **38.** (i) $\frac{11}{5}$ (ii) $\frac{1}{5}$

$$iii)$$
 1 (iv) 2^n

38. (i)
$$\frac{11}{5}$$

(ii)
$$\frac{1}{5}$$

39. (i)
$$x = \frac{5}{13}$$
, $y = \frac{14}{13}$

(ii)
$$x = 6, y = 1$$

(ii)
$$x = 6$$
, $y = 1$ (iii) $x = \frac{2}{21}$, $y = -\frac{8}{21}$

40. (i)
$$\frac{3}{2}$$
 – 2i is the only solution (ii) all purely imaginary numbers

49.
$$(2n+1) \frac{\pi}{2}, n \in \mathbf{I}$$

50. Exception is
$$z = 1$$

EXERCISE 5.2

- **1.** (*i*) True
- (ii) True
- (iii) True
- (iv) True (v) True

- **2.** 0
- $3. -\theta$
- **4.** (i) $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$ (ii) 1 i (iii) 0 3i (iv) $\frac{5}{2} + \frac{5\sqrt{3}}{2}i$ **5.** $-2\sqrt{3} + 2i$